1
|
Jeddi J, Niskanen J, Lessard BH, Sangoro J. Ion transport in polymerized ionic liquids: a comparison of polycation and polyanion systems. Faraday Discuss 2024; 253:426-440. [PMID: 39101858 DOI: 10.1039/d4fd00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The correlation among chemical structure, mesoscale structure, and ion transport in 1,2,3-triazole-based polymerized ionic liquids (polyILs) featuring comparable polycation and polyanion backbones is investigated by wide-angle X-ray scattering (WAXS), differential scanning calorimetry, and broadband dielectric spectroscopy (BDS). Above the glass transition temperature, Tg, higher ionic conductivity is observed in polycation polyILs compared to their polyanion counterparts, and ion conduction is enhanced by increasing the counterion volume in both polycation or polyanion polyILs. Below Tg, polyanions show lower activation energy associated with ion conduction. However, the validity of the Barton-Nakajima-Namikawa relation indicates that hopping conduction is the dominant charge transport mechanism in all the polyILs studied. While a significant transition from a Vogel-Fulcher-Tammann to Arrhenius type of thermal activation is observed below Tg, the decoupling index, often used to quantify the extent to which segmental dynamics and ion conduction are correlated, remains unaltered for the polyILs studied, suggesting that this index may not be a general parameter to characterize charge transport in polymerized ionic liquids. Furthermore, detailed analyses of the WAXS results indicate that both the mobile ion type and the structure of the pendant groups control mesoscale organization. These findings are discussed within the framework of recent models, which account for the subtle interplay between electrostatic and elastic forces in determining ion transport in polyILs. The findings demonstrate the intricate balance between the chemical structure and interactions in polyILs that determine ion conduction in this class of polymer electrolytes.
Collapse
Affiliation(s)
- Javad Jeddi
- Department of Chemical and Biomolecular Engineering Ohio State University, Columbus, Ohio 43210, USA.
| | - Jukka Niskanen
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave, Ottawa, ON, K1N 6N5, Canada
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
2
|
Rajahmundry GK, Patra TK. Understanding Ion Distribution and Diffusion in Solid Polymer Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18942-18949. [PMID: 39185775 DOI: 10.1021/acs.langmuir.4c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Solid polymer electrolytes (SPEs)─polymer melts with added salts─exhibit ion conduction and high mechanical properties, and are thus promising materials for future energy storage devices. The ion conductivity in an SPE is intricately connected to the salt ion distribution in the polymer matrix. The relationship between ion diffusion and ion distribution in SPEs remains unresolved. Here, we conduct coarse-grained molecular dynamics simulations and establish correlations between ion distribution and transport for a phenomenological SPE model. We propose phase diagrams of SPEs as a function of ion pair size, ion concentration, and the Bjerrum length of the material. A crossover from a discrete ion aggregate to a percolated ion aggregate is demonstrated as a function of ion pair size for low ion concentration in the SPE. The ion diffusion shows a strong correlation with its size, as has been found experimentally. The work provides important design strategies for controlling the ion distribution and enhancing ion conductivity in a polymer matrix.
Collapse
Affiliation(s)
- Ganesh K Rajahmundry
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tarak K Patra
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
3
|
Stevens MJ, Rempe SLB. Binding of Li + to Negatively Charged and Neutral Ligands in Polymer Electrolytes. J Phys Chem Lett 2023; 14:10200-10207. [PMID: 37930189 DOI: 10.1021/acs.jpclett.3c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Conceptually, single-ion polymer electrolytes (SIPE) with the anion bound to the polymer could solve major issues in Li-ion batteries, but their conductivity is too low. Experimentally, weakly interacting anionic groups have the best conductivity. To provide a theoretical basis for this result, density functional theory calculations of the optimized geometries and energies are performed for charged ligands used in SIPE. Comparison is made to neutral ligands found in dual-ion conductors, which demonstrate higher conductivity. The free energy differences between adding and subtracting a ligand are small enough for the neutral ligands to have the conductivity seen experimentally. However, charged ligands have large barriers, implying that lithium transport will coincide with the slow polymer diffusion, as observed in experiments. Overall, SIPE will require additional solvent to achieve a sufficiently high conductivity. Additionally, the binding of mono- and bidentate geometries varies, providing a simple and clear reason that polarizable force fields are required for detailed interactions.
Collapse
Affiliation(s)
- Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan L B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
4
|
Stevens MJ, Rempe SLB. Binding of carboxylate and water to monovalent cations. Phys Chem Chem Phys 2023; 25:29881-29893. [PMID: 37889481 DOI: 10.1039/d3cp04200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The interactions of carboxylate anions with water and cations are important for a wide variety of systems, both biological and synthetic. To gain insight on properties of the local complexes, we apply density functional theory, to treat the complex electrostatic interactions, and investigate mixtures with varied numbers of carboxylate anions (acetate) and waters binding to monovalent cations, Li+, Na+ and K+. The optimal structure with overall lowest free energy contains two acetates and two waters such that the cation is four-fold coordinated, similar to structures found earlier for pure water or pure carboxylate ligands. More generally, the complexes with two acetates have the lowest free energy. In transitioning from the overall optimal state, exchanging an acetate for water has a lower free energy barrier than exchanging water for an acetate. In most cases, the carboxylates are monodentate and in the first solvation shell. As water is added to the system, hydrogen bonding between waters and carboxylate O atoms further stabilizes monodentate structures. These structures, which have strong electrostatic interactions that involve hydrogen bonds of varying strength, are significantly polarized, with ChelpG partial charges that vary substantially as the bonding geometry varies. Overall, these results emphasize the increasing importance of water as a component of binding sites as the number of ligands increases, thus affecting the preferential solvation of specific metal ions and clarifying Hofmeister effects. Finally, structural analysis correlated with free energy analysis supports the idea that binding to more than the preferred number of carboxylates under architectural constraints are a key to ion transport.
Collapse
Affiliation(s)
- Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| | - Susan L B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA.
| |
Collapse
|
5
|
Vigil DL, Stevens MJ, Frischknecht AL. Accurate Calculation of Solvation Properties of Lithium Ions in Nonaqueous Solutions. J Phys Chem B 2023; 127:8002-8008. [PMID: 37676921 DOI: 10.1021/acs.jpcb.3c05591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
We perform all-atom molecular dynamics simulations of lithium triflate in 1,2-dimethoxyethane using six different literature force fields. This system is representative of many experimental studies of lithium salts in solvents and polymers. We show that multiple historically common force fields for lithium ions give qualitatively incorrect results when compared with those from experiments and quantum chemistry calculations. We illustrate the importance of correctly selecting force field parameters and give recommendations on the force field choice for lithium electrolyte applications.
Collapse
Affiliation(s)
- Daniel L Vigil
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark J Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Amalie L Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
6
|
Stolberg MA, Paren BA, Leon PA, Brown CM, Winter G, Gordiz K, Concellón A, Gómez-Bombarelli R, Shao-Horn Y, Johnson JA. Lamellar Ionenes with Highly Dissociative, Anionic Channels Provide Lower Barriers for Cation Transport. J Am Chem Soc 2023; 145:16200-16209. [PMID: 37459594 DOI: 10.1021/jacs.3c05053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Solid polymer electrolytes have the potential to enable safer and more energy-dense batteries; however, a deeper understanding of their ion conduction mechanisms, and how they can be optimized by molecular design, is needed to realize this goal. Here, we investigate the impact of anion dissociation energy on ion conduction in solid polymer electrolytes via a novel class of ionenes prepared using acyclic diene metathesis (ADMET) polymerization of highly dissociative, liquid crystalline fluorinated aryl sulfonimide-tagged ("FAST") anion monomers. These ionenes with various cations (Li+, Na+, K+, and Cs+) form well-ordered lamellae that are thermally stable up to 180 °C and feature domain spacings that correlate with cation size, providing channels lined with dissociative FAST anions. Electrochemical impedance spectroscopy (EIS) and differential scanning calorimetry (DSC) experiments, along with nudged elastic band (NEB) calculations, suggest that cation motion in these materials operates via an ion-hopping mechanism. The activation energy for Li+ conduction is 59 kJ/mol, which is among the lowest for systems that are proposed to operate via an ion conduction mechanism that is decoupled from polymer segmental motion. Moreover, the addition of a cation-coordinating solvent to these materials led to a >1000-fold increase in ionic conductivity without detectable disruption of the lamellar structure, suggesting selective solvation of the lamellar ion channels. This work demonstrates that molecular design can facilitate controlled formation of dissociative anionic channels that translate to significant enhancements in ion conduction in solid polymer electrolytes.
Collapse
Affiliation(s)
- Michael A Stolberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Benjamin A Paren
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pablo A Leon
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gavin Winter
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kiarash Gordiz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rafael Gómez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yang Shao-Horn
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Wang RY, Jeong S, Ham H, Kim J, Lee H, Son CY, Park MJ. Superionic Bifunctional Polymer Electrolytes for Solid-State Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203413. [PMID: 35861998 DOI: 10.1002/adma.202203413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Achieving superionic conductivity from solid-state polymer electrolytes is an important task in the development of future energy storage and conversion technologies. Herein, a platform for innovative electrolyte technologies based on a bifunctional polymer, poly(3-hydroxy-4-sulfonated styrene) (PS-3H4S), is presented. By incorporating OH and SO3 H functional groups at adjacent positions in the styrene repeating unit, "intra-monomer" hydrogen bonds are formed to effectively weaken the electrostatic interactions of the SO3 - moieties in the polymer matrix with embedded ions, promoting rich structural and dynamic heterogeneity in the PS-3H4S electrolyte. Upon the incorporation of an ionic liquid, interconnected rod-like ion channels, which allow the decoupling of ion relaxation from polymer relaxation, are formed in the stiff motif of the polymeric domains passivated by interfacial ionic layers. This results in accelerated proton hopping through the glassy polymer matrix, and proton hopping becomes more pronounced at cryogenic temperatures down to -35 °C. The PS-3H4S/ionic liquid composite electrolytes exhibit a high ionic conductivity of 10-3 S cm-1 and high storage modulus of ≈100 MPa at 25 °C, and can be successfully applied in soft actuators and lithium-metal batteries.
Collapse
Affiliation(s)
- Rui-Yang Wang
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seungwon Jeong
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeonseong Ham
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihoon Kim
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hojun Lee
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chang Yun Son
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moon Jeong Park
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
8
|
Rezayani M, Sharif F, Netz RR, Makki H. Insight into the relationship between molecular morphology and water/ion diffusion in cation exchange membranes: Case of partially sulfonated polyether sulfone. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Paren BA, Nguyen N, Ballance V, Hallinan DT, Kennemur JG, Winey KI. Superionic Li-Ion Transport in a Single-Ion Conducting Polymer Blend Electrolyte. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin A. Paren
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Nam Nguyen
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Valerie Ballance
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University−Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Karen I. Winey
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Grim BJ, Green MD. Thermodynamics and Structure‐Property Relationships of Charged Block Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bradley J. Grim
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| | - Matthew D. Green
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| |
Collapse
|
11
|
Paren BA, Häußler M, Rathenow P, Mecking S, Winey KI. Decoupled Cation Transport within Layered Assemblies in Sulfonated and Crystalline Telechelic Polyethylenes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin A. Paren
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, Pennsylvania 19104, United States
| | - Manuel Häußler
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Patrick Rathenow
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Nguyen N, Blatt MP, Kim K, Hallinan DT, Kennemur JG. Investigating miscibility and lithium ion transport in blends of poly(ethylene oxide) with a polyanion containing precisely-spaced delocalized charges. Polym Chem 2022. [DOI: 10.1039/d2py00605g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synthesis of a precision single ion conductor with a phenylsulfonyl (TFSI) lithium salt pendant at every 5th carbon is reported and miscibility, conductivity, and transference studies are performed upon blending with PEO at varying compositions.
Collapse
Affiliation(s)
- Nam Nguyen
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| | - Michael Patrick Blatt
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Kyoungmin Kim
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering, Florida A&M University–Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Park J, Easterling CP, Armstrong CC, Huber DL, Bowman JI, Sumerlin BS, Winey KI, Taylor MK. Nanoscale layers of precise ion-containing polyamides with lithiated phenyl sulfonate in the polymer backbone. Polym Chem 2022. [DOI: 10.1039/d2py00802e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise polyamide ionomer produces well-defined nanoscale layers.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Charles P. Easterling
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Christopher C. Armstrong
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Dale L. Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jared I. Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mercedes K. Taylor
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
14
|
Kim K, Nguyen N, Marxsen SF, Smith S, Alamo RG, Kennemur JG, Hallinan DT. Ionic Transport and Thermodynamic Interaction in Precision Polymer Blend Electrolytes for Lithium Batteries. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyoungmin Kim
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| | - Nam Nguyen
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
| | - Stephanie F. Marxsen
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
| | - Sage Smith
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| | - Rufina G. Alamo
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306 USA
| | - Daniel T. Hallinan
- Department of Chemical and Biomedical Engineering Florida A&M University–Florida State University (FAMU‐FSU) College of Engineering 2525 Pottsdamer Street Tallahassee FL 32310 USA
- Aero‐propulsion, Mechatronics and Energy (AME) Center FAMU‐FSU College of Engineering 2003 Levy Avenue Tallahassee FL 32310 USA
| |
Collapse
|
15
|
Staiger A, Paren BA, Zunker R, Hoang S, Häußler M, Winey KI, Mecking S. Anhydrous Proton Transport within Phosphonic Acid Layers in Monodisperse Telechelic Polyethylenes. J Am Chem Soc 2021; 143:16725-16733. [PMID: 34585919 DOI: 10.1021/jacs.1c08031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymers bearing phosphonic acid groups have been proposed as anhydrous proton-conducting membranes at elevated operating temperatures for applications in fuel cells. However, the synthesis of phosphonated polymers and the control over the nanostructure of such polymers is challenging. Here, we report the straightforward synthesis of phosphonic acid-terminated, long-chain aliphatic materials with precisely 26 and 48 carbon atoms (C26PA2 and C48PA2). These materials combine the structuring ability of monodisperse polyethylenes with the ability of phosphonic acid groups to form strong hydrogen-bonding networks. Anhydride formation is absent so that charge carrier loss by a condensation reaction is avoided even at elevated temperatures. Below the melting temperature (Tm), both materials exhibit a crystalline polyethylene backbone and a layered morphology with planar phosphonic acid aggregates separated by 29 and 55 Å for C26PA2 and C48PA2, respectively. Above Tm, the amorphous polyethylene (PE) segments coexist with the layered aggregates. This phenomenon is especially pronounced for the C26PA2 and is identified as a thermotropic smectic liquid crystalline phase. Under these conditions, an extraordinarily high correlation length (940 Å) along the layer normal is observed, demonstrating the strength of the hydrogen bond network formed by the phosphonic acid groups. The proton conductivity in both materials in the absence of water reaches 10-4 S/cm at 150 °C. These new precise phosphonic acid-based materials illustrate the importance of controlling the chemistry to form self-assembled nanoscale aggregates that facilitate rapid proton conductivity.
Collapse
Affiliation(s)
- Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Benjamin A Paren
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robin Zunker
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Son Hoang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Manuel Häußler
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
16
|
Larison T, Stefik M. Persistent Micelle Corona Chemistry Enables Constant Micelle Core Size with Independent Control of Functionality and Polyelectrolyte Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9817-9825. [PMID: 34355919 DOI: 10.1021/acs.langmuir.1c01384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer micelles have found significant uses in areas such as drug/gene delivery, medical imaging, and as templates for nanomaterials. For many of these applications, the micelle performance depends on its size and chemical functionalization. To date, however, these parameters have often been fundamentally coupled since the equilibrium size of a micelle is a function of the chemical composition in addition to other parameters. Here, we demonstrate a novel processing pathway allowing for the chemical modification to the corona of kinetically trapped "persistent" polymer micelles, termed Persistent Micelle Corona Chemistry (PMCC). Judicious planning is crucial to this size-controlled functionalization where each step requires all reagents and polymer blocks to be compatible with (1) the desired chemistry, (2) micelle persistency, and (3) micelle dispersion. A desired functionalization can be implemented with PMCC by pairing the synthetic planning with polymer solubility databases. Specifically, poly(cyclohexyl methacrylate-b-(diethoxyphosphoryl)methyl methacrylate) (PCHMA-b-PDEPMMA) was prepared to combine a glassy-core block (PCHMA) for kinetic control with a block (PDEPMMA) that is able to be hydrolyzed to yield acid groups. The processing sequence determines the resulting micelle size distribution where the hydrolyzed-then-micellized sequence yields widely varying micelle dimensions due to equilibration. In contrast, the micellized-then-hydrolyzed sequence maintains kinetically trapped micelles throughout the PMCC process. Statistically significant transmission electron microscopy (TEM) measurements demonstrate that PMCC uniquely enables this functionalization with constant average micelle core dimensions. Furthermore, these kinetically trapped micelles also subsequently maintain constant micelle core size when modifying the Coulombic interactions of the micelle corona via pH changes.
Collapse
Affiliation(s)
- Taylor Larison
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Morgan Stefik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
17
|
Abstract
We present a general theory of ionic conductivity in polymeric materials consisting of percolated ionic pathways. Identifying two key length scales corresponding to inter-path permeation distance ξ and one-dimensional hopping conduction path length mλ, we have derived closed-form formulas in terms of the energy U required to unbind a conductive ion from its bound state and the partition ratio ξ/mλ between the three-dimensional permeation and one-dimensional hopping pathways. The results provide design strategies to significantly enhance ionic conductivity in single-ion conductors. For large barriers to dissociate an ion, corrections to the Arrhenius law are presented. The predicted dependence of ionic conductivity on the unbinding time is in agreement with results in the literature based on simulations and experiments. This theory is generally applicable to conductive systems where the two mechanisms of permeation and hopping occur concurrently.
Collapse
Affiliation(s)
- Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
18
|
Park J, Staiger A, Mecking S, Winey KI. Structure–Property Relationships in Single-Ion Conducting Multiblock Copolymers: A Phase Diagram and Ionic Conductivities. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Schlenoff JB, Akkaoui K. Dissecting Dynamics Near the Glass Transition Using Polyelectrolyte Complexes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Khalil Akkaoui
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|