1
|
Wang B, Liu Y, Chen X, Liu XT, Liu Z, Lu C. Aggregation-induced emission-active supramolecular polymers: from controlled preparation to applications. Chem Soc Rev 2024; 53:10189-10215. [PMID: 39229831 DOI: 10.1039/d3cs00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Supramolecular polymers are typical self-assemblies, in which repeating monomer units are bonded together with dynamic and reversible noncovalent interactions. Supramolecular polymers can combine the advantages of polymer science and supramolecular chemistry. Aggregation-induced emission (AIE) means that a molecule remains faintly emissive in the dispersed state but intensively luminescent in a highly aggregated state. AIE has brought new opportunities and further development potential to the field of polymeric chemistry. The integration of AIE luminogens with supramolecular interactions can provide new vitality for supramolecular polymers. Therefore, it is essential for scientists to understand the preparation and applications of AIE-active supramolecular polymers. This review focuses on the recent advanced progress in the preparation of AIE-active supramolecular polymers. In addition, we summarize the newly developed supramolecular polymers with an AIE nature and their applications in chemical sensing, and in vitro and in vivo imaging, as well as the visualization of their structure and properties. Finally, the development trends and challenges of AIE-active supramolecular polymers are prospected.
Collapse
Affiliation(s)
- Beibei Wang
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuhao Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Ting Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhongyi Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Chao Lu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Wang Z, Zhao Z, Jin S, Bian F, Chang Y, Duan X, Men X, You R. Investigation of sorptive interactions between volatile organic compounds and supramolecules at dynamic oscillation using bulk acoustic wave resonator virtual sensor arrays. MICROSYSTEMS & NANOENGINEERING 2024; 10:99. [PMID: 39021529 PMCID: PMC11252376 DOI: 10.1038/s41378-024-00729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Supramolecules are considered as promising materials for volatile organic compounds (VOCs) sensing applications. The proper understanding of the sorption process taking place in host-guest interactions is critical in improving the pattern recognition of supramolecules-based sensing arrays. Here, we report a novel approach to investigate the dynamic host-guest recognition process by employing a bulk acoustic wave (BAW) resonator capable of producing multiple oscillation amplitudes and simultaneously recording multiple responses to VOCs. Self-assembled monolayers (SAMs) of β-cyclodextrin (β-CD) were modified on four BAW sensors to demonstrate the gas-surface interactions regarding oscillation amplitude and SAM length. Based on the method, a virtual sensor array (VSA) type electronic nose (e-nose) can be realized by pattern recognition of multiple responses at different oscillation amplitudes of a single sensor. VOCs analysis was realized respectively by using principal component analysis (PCA) for individual VOC identification and linear discriminant analysis (LDA) for VOCs mixtures classification.
Collapse
Affiliation(s)
- Zilun Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205 China
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072 China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
| | - Zeyu Zhao
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072 China
| | - Suhan Jin
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072 China
| | - Feilong Bian
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205 China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072 China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, 300072 China
| | - Xiangdong Men
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205 China
| | - Rui You
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192 China
| |
Collapse
|
3
|
Gu MJ, Han XN, Han Y, Chen CF. Strategies for Constructing Macrocyclic Arene-Based Color-Tunable Supramolecular Luminescent Materials. Chempluschem 2024; 89:e202400023. [PMID: 38288886 DOI: 10.1002/cplu.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Over the past decades, supramolecular luminescent materials (SLMs) have attracted considerable attention due to their dynamic noncovalent interactions, versatile functions, and intriguing applications in many research fields. From construction to application, great efforts and progress have been made in color-tunable SLMs in recent years. In order to realize multicolor luminescence, various design strategies have been proposed. Macrocyclic chemistry, one of the brightest jewels in the field of supramolecular chemistry, has played a crucial role in the construction of stimuli-responsive and emission-tunable SLMs. Moreover, the flexible and tunable conformation and multiple noncovalent complexation sites of the macrocyclic arenes (MAs) afford a new opportunity to create such dynamic smart luminescent materials. Inspired by our reported work on the color-tunable supramolecular crystalline assemblies modulated by the conformation of naphth[4]arene, this Concept provides a summary of the latest developments in the construction of color-tunable MA-based SLMs, accompanied by the various construction strategies. The aim is to provide researchers with a new perspective to construct color-tunable SLMs with fascinating functions.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
- University of Chinese Academy of Science, Beijing, 100084, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
- University of Chinese Academy of Science, Beijing, 100084, China
| |
Collapse
|
4
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
5
|
Huang X, Liu S, Rao S, Lu J, Xiao K, Bai Y, Huang Z, Li H. A fluorescent controllable supramolecular crosslinked polymer constructed by complementary metal coordination interaction. Dalton Trans 2023; 52:14510-14516. [PMID: 37779506 DOI: 10.1039/d3dt02452k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In this work, two different monomers M1 and M2 were designed and synthesized. M1 + M2 + Zn(OTf)2 could self-assemble to form a supramolecular crosslinked polymer (SCP) based on complementary terpyridine-based metal coordination interaction. The self-assembly of M1 + M2 + Zn(OTf)2 was studied by various techniques, such as 1H NMR, 2D COSY NMR, 2D NOESY NMR, UV-Vis analysis, fluorescence analysis, viscosity measurement, and TEM. The experimental result indicated that the molecular weight of the SCP depended on the initial monomer concentration. The SCP could further turn into supramolecular polymer gel at high concentrations, and the reversible gel-sol transformation could be realized by heating/cooling. Moreover, the fluorescence quenching/enhancement of the SCP could be adjusted by adding base/acid.
Collapse
Affiliation(s)
- Xiaohui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Shengyong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Shenghui Rao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Jiangyue Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Ke Xiao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Zhe Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Hui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
6
|
Supramolecular Polymers: Recent Advances Based on the Types of Underlying Interactions. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Zhong H, Li L, Zhu S, Wang Y. Controllable self-assembly of thiophene-based π-conjugated molecule and further construction of pillar[5]arene-based host-guest white-light emission system. Front Chem 2022; 10:980173. [PMID: 36118325 PMCID: PMC9478560 DOI: 10.3389/fchem.2022.980173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Photoluminescence materials have been widely applied in biological imaging and sensing, anti-counterfeiting, light-emitting diodes, logic gates et al. The fabrication of luminescent materials with adjustable emission color by self-assembly of π-conjugated molecules has attracted particular attention. In this study, we designed and synthesized a thiophene-based α-cyanostyrene-derivative (TPPA), then investigate its self-assembly morphology and fluorescence emission under different organic solvents, different proportions of H2O/THF (DMSO) mixture and different pH conditions by UV, FL and SEM images. It was found that TPPA formed nanoparticles by self-assembly in organic solvent (THF or DMSO), accompanied by strong fluorescence emission. However, with the increase of water ratio, the fluorescence intensity decreased accompany with red shift, and the self-assembly morphology changed from nanoparticles to fibers. More interestingly, when pillar[5]arene (P5) was added to form host-guest complex with TPPA, white light emission could be successfully constructed when the ratio of TPPA to P5 was 1:20 and THF to water was 19:1.
Collapse
Affiliation(s)
- Haibo Zhong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| | - Shajun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
- *Correspondence: Liang Li, ; Shajun Zhu, ; Yang Wang,
| |
Collapse
|
8
|
Rewritable acidochromic papers based on oxazolidine for anticounterfeiting and photosensing of polarity and pH of aqueous media. Sci Rep 2022; 12:9412. [PMID: 35672386 PMCID: PMC9174242 DOI: 10.1038/s41598-022-13440-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Oxazolidine is a new category of stimuli-chromic organic compounds with unique characteristics in response to polarity, pH changes, water, light, and metal ions that were well-known as solvatochromism, acidochromism, hydrochromism, photochromism, and ionochromism, respectively. Therefore, oxazolidine derivatives have been developed for their potential applications in chemosensors, anticounterfeiting, and rewritable hydrochromic papers. In this study, various oxazolidine derivatives containing hydroxyl and naphthalene substituted groups were synthesized by using two different indolenine compounds. The synthesized oxazolidine derivatives were used for investigation of solvatochromism in different solvents, and also acidochromism in various pHs by using UV–Vis and fluorescence spectroscopies. In addition, the oxazolidine derivatives were coated on cellulosic papers using a layer-by-layer strategy to develop rewritable acidochromic papers for printing of security tags on cellulosic papers by using acidic and alkaline solutions as water-based inks. Therefore, the developed rewritable acidochromic papers could be used as security papers.
Collapse
|
9
|
Huang X, Li R, Duan Z, Xu F, Li H. Supramolecular polymer gels: from construction methods to functionality. SOFT MATTER 2022; 18:3828-3844. [PMID: 35506880 DOI: 10.1039/d2sm00352j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular polymer gels (SPGs) are precisely designed gels brought together by noncovalent interactions to form three-dimensional network structures of polymers. SPGs combine the merits of supramolecular polymers and gels, such as stimuli-responsiveness, self-healing, and self-adaptation, which endows SPGs with potential application value in the fields of biomaterials, etc. Recently, much effort has been made to design new SPGs and related materials with high performance. Herein, we review the research endeavor and future directions of SPGs depending on the construction methods, topological structures, stimuli-responsiveness, and functionality. We hope that the review will provide reference values for the researchers working in supramolecular chemistry and gels.
Collapse
Affiliation(s)
- Xiaohui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Riqiang Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Zhaozhao Duan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Fenfen Xu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Hui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
10
|
Pei Q, Han Q, Tang F, Wu J, Xu S, Zhang M, Ding A. Gallic‐Acid‐Modified Naphthalimide Containing Disulfide Bond as Reduction‐Responsive Supramolecular Organogelator. ChemistrySelect 2022. [DOI: 10.1002/slct.202201296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiang Pei
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Qingqing Han
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Fang Tang
- Key Laboratory of Radiopharmaceuticals Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 China
| | - Jinjin Wu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Shijie Xu
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Mengyao Zhang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| | - Aixiang Ding
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 China
| |
Collapse
|
11
|
Shi B, Zhao X, Chai Y, Qin P, Qu W, Lin Q, Zhang Y. Detection of L‐Aspartic Acid and L‐Glutamic Acid in Water Using a Fluorescent Nanoparticle Constructed by Pillar[5]arene‐Based Molecular Recognition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bingbing Shi
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Xing‐Xing Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Yongping Chai
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Peng Qin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Key Laboratory of Eco-environmental Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 P. R. China
- Gansu Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| |
Collapse
|
12
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
13
|
Shi B, Chai Y, Qin P, Zhao XX, Li W, Zhang YM, Wei TB, Lin Q, Yao H, Qu WJ. Detection of aliphatic aldehydes by a pillar[5]arene-based fluorescent supramolecular polymer with vaporchromic behavior. Chem Asian J 2022; 17:e202101421. [PMID: 35037734 DOI: 10.1002/asia.202101421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/12/2022] [Indexed: 11/10/2022]
Abstract
The detection of volatile aliphatic aldehydes is of significance because of their chemical toxicity, physical volatility and widespread applications in chemical industrial processes. In this work, the direct detection of aliphatic aldehydes is tackled using a fluorescent supramolecular polymer with vaporchromic behavior which is contructed by pillar[5]arene-based host-guest intereactions. Thin films with strong orange-yellow fluorescence are prepared by coating the linear supramolecular polymer on glass sheets. When the thin films are exposed to aliphatic aldehydes with different carbon chain lengths, they can selectivly sensing n -butyraldehyde ( C 4 ) and caprylicaldehyde ( C 8 ), accompanied by fluorescence quenching, indicating that the supramolecular polymer is a highly selective vapochromic response material for aliphatic aldehydes with long alkyl chains.
Collapse
Affiliation(s)
- Bingbing Shi
- Northwest Normal University, college of chemistry and chemical engineering, 967 Anning East Road, 730070, Lanzhou, CHINA
| | - Yongping Chai
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Peng Qin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Xing-Xing Zhao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Weichun Li
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - You-Ming Zhang
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Tai-Bao Wei
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Qi Lin
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Hong Yao
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| | - Wen-Juan Qu
- Northwest Normal University, college of chemistry and chemical engineering, CHINA
| |
Collapse
|
14
|
Karuk Elmas SN, Arslan FN, Aydin D. A novel ratiometric fluorescent and colorimetric sensor based on a 1,8-naphthalimide derivative for nanomolar Cu 2+ sensing: smartphone and food applications. Analyst 2022; 147:2687-2695. [DOI: 10.1039/d2an00537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 1,8-naphthalimide-based chemical sensor with ratiometric fluorescence behavior, as well as “naked-eye” response was developed for the sensitive and specific determination of Cu2+ at nanomolar levels.
Collapse
Affiliation(s)
- Sukriye Nihan Karuk Elmas
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Fatma Nur Arslan
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Duygu Aydin
- Department of Chemistry, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
15
|
Zhou Y, Tang H, Li ZH, Xu L, Wang L, Cao D. Bio-inspired AIE pillar[5]arene probe with multiple binding sites to discriminate alkanediamines. Chem Commun (Camb) 2021; 57:13114-13117. [PMID: 34766614 DOI: 10.1039/d1cc05153a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two functionalized pillar[5]arenes (H1 and H2) with significant AIE properties were synthesized. H2 is an excellent probe to selectively detect specific alkanediamines owing to its multiple binding sites, which result in the enhancement of emission based on the AIE mechanism and the induced-fit mechanism, and provides a new strategy to develop probes with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yibin Zhou
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Hao Tang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Zhao-Hui Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Linxian Xu
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Lingyun Wang
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Derong Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
16
|
Zhu XY, Yang XN, Wu H, Tao Z, Xiao X. Construction of supramolecular fluorescent probe by a water-soluble pillar[5]arene and its recognition of carbonate ion. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xin Yi Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Heng Wu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
17
|
Li Y, Wen J, Li J, Wu Z, Li W, Yang K. Recent Applications of Pillar[ n]arene-Based Host-Guest Recognition in Chemosensing and Imaging. ACS Sens 2021; 6:3882-3897. [PMID: 34665606 DOI: 10.1021/acssensors.1c01510] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pillar[n]arene is a novel kind of synthetic supramolecular macrocyclic host characterized by its particular pillar-shaped structure consisting of an electron-rich cavity and two finely adjustable rims. Benefiting from its rigid structure, facile synthesis, ease of functionalization, and outstanding host-guest chemistry, pillar[n]arene shows great potential for diverse applications. Significantly, the host-guest recognition of pillar[n]arene provides a novel approach for chemosensing and imaging. Herein, this Review critically and comprehensively reviews the applications of pillar[n]arene-based host-guest recognition in chemosensing and imaging. The sensing and imaging mechanisms as well as the unique roles and advantages of pillar[n]arene-based host-guest recognition are summarized. In addition, preparations of hybrid materials based on pillar[n]arene and inorganic materials are also introduced comprehensively in the light of chemosensing and imaging. Finally, current challenges and perspectives on pillar[n]arene-based host-guest recognition in chemosensing and imaging are outlined.
Collapse
Affiliation(s)
- Yutong Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jia Wen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jiangshan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Zejia Wu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kui Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
18
|
Liu J, Sun X, Huang T, Zhang Y, Yao H, Wei T, Lin Q. Influence of Monomers’ Structure on the Assembly and Material Property of Pillar[5]
arene‐Based
Supramolecular Polymer Gels. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan Liu
- College of Chemical Engineering, Northwest Minzu University (Northwest University for Nationalities), Xibei Xincun Lanzhou Gansu 730000 China
| | - Xiao‐Wen Sun
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Ting‐Ting Huang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Hong Yao
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Qi Lin
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
19
|
Liu J, Yang HL, Sun XW, Zhang YM, Yao H, Wei TB, Lin Q. A simple pillar[5]arene assembled multi-functional material with ultrasensitive sensing, self-healing, conductivity and host-guest stimuli-responsive properties. SOFT MATTER 2021; 17:8308-8313. [PMID: 34550160 DOI: 10.1039/d1sm01001h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multi-functional materials have received wide attention due to their potential applications in various fields; therefore, developing a simple and easy strategy for the preparation of multi-functional materials is an interesting issue. In this work, a novel supramolecular gel, TP-QG, has been successfully constructed via the assembly of a simple methoxyl-pillar[5]arene host (TP) and a tripodal (tri-pyridine-4-yl)-amido-benzene guest (Q). Interestingly, TP-QG could act as a multi-functional material and showed strong fluorescence, good self-healing, host-guest stimuli-responsiveness and conductive properties. Due to these properties, TP-QG shows a fascinating application prospect. For instance, TP-QG could exhibit ultrasensitive fluorescence response for Fe3+ and F- in water via the fluorescence "ON-OFF-ON" pathway; the lowest detection limit (LOD) of TP-QG for Fe3+ was 2.32 × 10-10 M and the LOD of TP-QG-Fe for F- was 4.30 × 10-8 M. These properties permit TP-QG to act as not only a Fe3+ and F- sensor, but also an "ON-OFF-ON" fluorescence display material and an efficient logic gate. Meanwhile, the xerogel of TP-QG could remove Fe3+ from water, and the adsorption ratio was 98.68%; the xerogel of TP-QG-Fe could also remove F- from water; the removal ratio was about 87.92%. This work provides a feasible way to construct multi-functional smart materials by host-guest assembly.
Collapse
Affiliation(s)
- Juan Liu
- College of Chemical Engineering, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University (Northwest University for Nationalities), Lanzhou, 730070, China.
| | - Hai-Long Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Xiao-Wen Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
20
|
Nelson M, Muniyasamy H, Kubendran AM, Balasubramaniem A, Sepperumal M, Ayyanar S. Carbazole based fluorescent chemosensor for the meticulous detection of tryptamine in aqueous medium and its efficacy in cell-imaging and molecular logic gate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Wang WM, Dai D, Wu JR, Wang CY, Wang Y, Yang YW. Recyclable Supramolecular Assembly-Induced Emission System for Selective Detection and Efficient Removal of Mercury(II). Chemistry 2021; 27:11879-11887. [PMID: 34043289 DOI: 10.1002/chem.202101437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 02/06/2023]
Abstract
An efficient strategy for simultaneously detecting and removing Hg2+ from water is vital to address mercury pollution. Herein a supramolecular assembly G⊂H with photoluminescent properties is facilely constructed through the self-assembly of a functional pillar[5]arene bearing two N,N-dimethyldithiocarbamoyl binding sites (H) and an AIE-active tetraphenylethene derivative (G). Remarkably, the fluorescence of G⊂H can be exclusively quenched by Hg2+ among the 30 cations due to the formation of non-luminous ground state complex and only L-cysteine can restore fluorescence in the common 20 amino acids. Meanwhile, the probe G⊂H has a considerable thermal and pH stability, a good anti-interference property from various cations, and a satisfactory sensitivity. More importantly, G⊂H exhibits a prominent capability of Hg2+ removal with rapid capture rate (within 1 h) and excellent adsorption efficiency (98 %), as well as a highly efficient recyclability without losing any adsorption activity.
Collapse
Affiliation(s)
- Wei-Ming Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jia-Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Jiang Q, Zhao D, Wang J, Yan H, Cao S, Qiu Y, Wang H, Liao Y, Xie X. Light regulation and long-lived stability of RGB colors in cholesteric liquid crystal physical gels via a mixing strategy. SOFT MATTER 2021; 17:3216-3221. [PMID: 33624662 DOI: 10.1039/d0sm02283g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photo-responsive cholesteric liquid crystals (CLCs) have attracted much attention due to the dynamic tunability of their unique helical superstructure. However, it is still a challenge to endow the mechanical properties and to regulate the reflection colors at the same time. In this work, a simple strategy is developed for the construction of thermo-responsive CLC physical gels via the direct mixing of photo-responsive dopants and a gelator with nematic LCs. The reflection colors of CLCs and the mechanical properties of gels can be independently regulated due to the separation of the photo-responsive chiral group from the gelator. In addition, the CLC reflection colors can be regulated via visible light in the range of RGB with long-lived thermal stability. Finally, the information storage properties of this kind of CLC gel have been investigated.
Collapse
Affiliation(s)
- Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ma X, Qiao B, Lai Y, Geng Y, Le J, Feng E, Han X, Liu M. Intelligent writable material based on a supramolecular self-assembly gel. SOFT MATTER 2021; 17:1463-1467. [PMID: 33544112 DOI: 10.1039/d1sm00012h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple dual acylhydrazone-functionalized gelator (G1) has been designed and synthesized, and it was found to form a supramolecular organogel (G1-gel) in a mixed solvent of DMF-H2O. The gelator solution shows brilliant blue light upon mixing with Mg2+; this blue light can be erased by saliva or CO32-. Owing to this characteristic, a smart erasable writable material was prepared.
Collapse
Affiliation(s)
- Xinxian Ma
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Bo Qiao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Yingshan Lai
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Yutao Geng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Jinlong Le
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Enke Feng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Xinning Han
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, People's Republic of China.
| | - Minghua Liu
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|