1
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Radford CL, Saatkamp T, Bennet AJ, Holdcroft S. An organic proton cage that is ultra-resistant to hydroxide-promoted degradation. Nat Commun 2024; 15:3395. [PMID: 38649343 PMCID: PMC11035699 DOI: 10.1038/s41467-024-47809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Alkaline polymer membrane electrochemical energy conversion devices offer the prospect of using non-platinum group catalysts. However, their cationic functionalities are currently not sufficiently stable for vapor-phase applications, such as fuel cells. Herein, we report 1,6-diazabicyclo[4.4.4]tetradecan-1,6-ium (in-DBD), a cationic proton cage, that is orders of magnitude more resistant to hydroxide-promoted degradation than state-of-the-art organic cations under ultra-dry conditions and elevated temperature, and the first organic cation-hydroxide to persist at critically low hydration levels ( < 10% RH at 80 °C). This high stability against hydroxide-promoted degradation is due to the unique combination of endohedral protection and intra-bridgehead hydrogen bonding that prevents the removal of the inter-cavity proton and lowers the susceptibility to Hofmann elimination. We anticipate this discovery will facilitate a step-change in the advancement of materials and electrochemical devices utilizing anion-exchange membranes based on in-DBD that will enable stable operation under extreme alkaline conditions.
Collapse
Affiliation(s)
- Chase L Radford
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Torben Saatkamp
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Andrew J Bennet
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| | - Steven Holdcroft
- Department of Chemistry, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
3
|
Zhang S, Ma W, Tian L, Kong D, Zhu Q, Wang F, Zhu H. Twisted Poly( p-terphenyl- co- m-terphenyl)-Based Anion Exchange Membrane for Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7660-7669. [PMID: 38295432 DOI: 10.1021/acsami.3c15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In order to improve the mechanical and water electrolysis performance of anion exchange membranes (AEMs), we adjusted the ratio between p-terphenyl and m-terphenyl to balance the backbone conformation, which gives it a better suitability for a better combination with cations. The results showed that poly(m-terphenyl-co-p-terphenyl)-based AEMs have excellent mechanical properties. Among them, the m-p-TP-40-BOP-ASU membrane has the highest tensile strength and elongation at break (75.72 MPa and 16.07%). The ionic conductivity reaches 137.14 mS cm-1 at 80 °C owing to the fact that efficient ion-conducting channels are formed by well-balanced molecular structures. The current density of the m-p-TP-40-BOP-ASU membrane reached 1.96 A cm-2 (1 M KOH aq, 2.0 V and 60 °C). After testing for 112 h under a current density of 500 mA cm-2, the voltage increased by 102 mV compared to the initial electrolysis voltage. All results have shown that m-p-TP-x-BOP-ASU has excellent electrolysis performance and electrochemical durability and has a promising application prospect in AEM water electrolyzers.
Collapse
Affiliation(s)
- Shuhuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenli Ma
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lin Tian
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Defang Kong
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qingqing Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fanghui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hong Zhu
- State Key Laboratory of Chemical Resource Engineering, Institute of Modern Catalysis, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Kong Y, Lyu B, Fan C, Yang Y, Wang X, Shi B, Jiang J, Wu H, Jiang Z. Manipulation of Cationic Group Density in Covalent Organic Framework Membranes for Efficient Anion Transport. J Am Chem Soc 2023; 145:27984-27992. [PMID: 38100046 DOI: 10.1021/jacs.3c07958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Anion exchange membranes with high anion conductivity are highly desired for electrochemical applications. Increasing ion exchange capacity is a straightforward approach to enhancing anion conductivity but faces a challenge in dimensional stability. Herein, we report the design and preparation of three kinds of isoreticular covalent organic framework (COF) membranes bearing tunable quaternary ammonium group densities as anion conductors. Therein, the cationic groups are integrated into the backbones by flexible ether-bonded alkyl side chains. The highly quaternary ammonium-group-functionalized building units endow COF membranes with abundant cationic groups homogeneously distributed in the ordered channels. The flexible side chains alleviate electrostatic repulsion and steric hindrance caused by large cationic groups, ensuring a tight interlayer stacking and multiple interactions. As a result, our COF membranes achieve a high ion exchange capacity and exceptional dimensional stability simultaneously. Furthermore, the effect of the ionic group density on the ion conductivity in rigid COF channels is systematically explored. Experiments and simulations reveal that the ionic group concentration and side chain mobility jointly determine the ion transport behavior, resulting in the abnormal phenomenon that the anion conductivity is not positively correlated to the ionic group density. The optimal COF membrane achieves the ever-reported highest hydroxide ion conductivity over 300 mS cm-1 at 80 °C and 100% RH. This study offers insightful guidelines on the rational design and preparation of high-performance anion conductors.
Collapse
Affiliation(s)
- Yan Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Bohui Lyu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yi Yang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
5
|
Overton P, Konovalova A, Fraser K, Holdcroft S. The First Example of a Poly(arylimidazole) by Polycondensation of AB-type Monomers: Control of Molecular Mass by End-Capping, and Functionalization to Poly(arylimidazolium)s. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Li X, Wang Z, Chen Y, Li Y, Guo J, Zheng J, Li S, Zhang S. Imidazolium-based AEMs with high dimensional and alkaline-resistance stabilities for extended temperature range of alkaline fuel cells. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Li X, Yang K, Wang Z, Chen Y, Li Y, Guo J, Zheng J, Li S, Zhang S. Chain Architecture Dependence of Morphology and Water Transport in Poly(fluorene alkylene)-Based Anion-Exchange Membranes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaofeng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Kuan Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Zimo Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Yonggang Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Jing Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
- University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
8
|
Yu W, Ge Z, Zhang K, Liang X, Ge X, Wang H, Li M, Shen X, Xu Y, Wu L, Xu T. Development of a High-Performance Proton Exchange Membrane: From Structural Optimization to Quantity Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Ming Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xianhe Shen
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Wang Y. Virtual Special Issue: Polymeric Membranes for Advanced Separations. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|