1
|
Li C, Murphy EA, Skala SJ, Delaney KT, Hawker CJ, Shell MS, Fredrickson GH. Accelerated Prediction of Phase Behavior for Block Copolymer Libraries Using a Molecularly Informed Field Theory. J Am Chem Soc 2024; 146:29751-29758. [PMID: 39420443 DOI: 10.1021/jacs.4c11258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Solution formulations involving polymers are the basis for a wide range of products spanning consumer care, therapeutics, lubricants, adhesives, and coatings. These multicomponent systems typically show rich self-assembly and phase behavior that are sensitive to even small changes in chemistry and composition. Longstanding computational efforts have sought techniques for predictive modeling of formulation structure and thermodynamics without experimental guidance, but the challenges of addressing the long time scales and large length scales of self-assembly while maintaining chemical specificity have thwarted the emergence of general approaches. As a consequence, current formulation design remains largely Edisonian. Here, we present a multiscale modeling approach that accurately predicts, without any experimental input, the complete temperature-concentration phase diagram of model diblock polymers in solution, as established postprediction through small-angle X-ray scattering. The methodology employs a strategy whereby atomistic molecular dynamics simulations is used to parametrize coarse-grained field-theoretic models; simulations of the latter then easily surmount long equilibration time scales and enable rigorous determination of solution structures and phase behavior. This systematic and predictive approach, accelerated by access to well-defined block copolymers, has the potential to expedite in silico screening of novel formulations to significantly reduce trial-and-error experimental design and to guide selection of components and compositions across a vast range of applications.
Collapse
Affiliation(s)
- Charles Li
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Elizabeth A Murphy
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Stephen J Skala
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kris T Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Glenn H Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Chen Q, Xia X, Huang W, Zhang L, Ni R, Liu J. Topological Programmability of Isomerizable Polymers. PHYSICAL REVIEW LETTERS 2024; 133:048101. [PMID: 39121423 DOI: 10.1103/physrevlett.133.048101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/20/2024] [Indexed: 08/11/2024]
Abstract
Topology isomerizable networks (TINs) can be programmed into numerous polymers exhibiting unique and spatially defined (thermo-) mechanical properties. However, capturing the dynamics in topological transformations and revealing the intrinsic mechanisms of mechanical property modulation at the microscopic level is a significant challenge. Here, we use a combination of coarse-grained molecular dynamics simulations and reaction kinetic theory to reveal the impact of dynamic bond exchange reactions on the topology of branched chains. We find that, the grafted units follow a geometric distribution with a converged uniformity, which depends solely on the average grafted units of branched chains. Furthermore, we demonstrate that the topological structure can lead to spontaneous modulation of mechanical properties. The theoretical framework provides a research paradigm for studying the topology and mechanical properties of TINs.
Collapse
Affiliation(s)
| | - Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | | | | | | | | |
Collapse
|
3
|
Cui X, Zhang L, Yang Y, Tang P. Understanding the application of covalent adaptable networks in self-repair materials based on molecular simulation. SOFT MATTER 2024; 20:1486-1498. [PMID: 38264848 DOI: 10.1039/d3sm01364b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Covalent adaptable networks (CANs) are widely used in the field of self-repair materials. They are a group of covalently cross-linked associative polymers that undergo reversible chemical reactions, and can be further divided into dissociative CANs (Diss-CANs) and associative CANs (Asso-CANs). Self-repair refers to the ability of a material to repair itself without external intervention, and can be classified into self-adhesion and self-healing according to the utilization of open stickers. Unlike conventional materials, the viscoelastic properties of CANs are influenced by both the molecular structure and reaction kinetics, ultimately affecting their repair performance. To gain deeper insight into the repair mechanism of CANs, we conducted simulations by using the hybrid MC/MD algorithm, as previously proposed in our research. Interestingly, we observed a significant correlation between reaction kinetics and repair behavior. Asso-CANs exhibited strong mechanical strength and high creep resistance, rendering them suitable as self-adhesion materials. On the other hand, Diss-CANs formed open stickers that facilitated local relaxation, aligning perfectly with self-healing processes. Moreover, the introduction of crosslinkers in the form of small molecules enhanced the repair efficiency. Theoretically, it was found that the repair timescale of Asso-CANs is slower than that of Diss-CANs with identical molecular structures. Our study not only clarifies the similarities and differences between Diss-CANs and Asso-CANs in terms of their self-repairing capabilities, but more importantly, it provides valuable insights guiding the effective utilization of CANs in the development of self-repair materials.
Collapse
Affiliation(s)
- Xiang Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Lu Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Yuliang Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Ping Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Wen J, Xu G, Liang Z, Li S, Wang Y, Yang J, Nie Y. Combing experimental methods and molecular simulations to study self-healing behaviors of polyurethane elastomers containing multiple hydrogen bond networks and flexible blocks. Phys Chem Chem Phys 2023; 25:28162-28179. [PMID: 37818678 DOI: 10.1039/d3cp02723f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The preparation of polymers with high self-healing ability is conducive to environmental protection and resource conservation. In the present work, two kinds of polyurethane (PU) elastomers were prepared: the one containing flexible end blocks (polypropylene glycol) and the other containing flexible end blocks and 2-ureido-4[1H]-pyrimidinone (UPy) groups that can form reversible quadruple hydrogen bonds. Both of the two PU elastomers have self-healing ability. At low temperatures the PU without UPy groups exhibits stronger self-healing ability, while at high temperatures the PU with UPy groups has better self-healing function. The difference can be attributed to the combined effect of segmental mobility and reversible network strength. Based on molecular simulations, we further observed that the self-healing behaviors are affected by four factors: healing temperature, reversible interaction strength, reversible interaction site density and segment diffusion ability.
Collapse
Affiliation(s)
- Jianlong Wen
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Guangwei Xu
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Zhaopeng Liang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Sumin Li
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Yinmao Wang
- Key Laboratory for High Performance Transparent Protective Materials of Jiangsu Province, Jiangsu Tiemao Glass Co., Ltd., Nantong, 226600, China.
| | - Juan Yang
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Yijing Nie
- Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Xiong H, Yue T, Wu Q, Zhang L, Xie Z, Liu J, Zhang L, Wu J. Self-healing bottlebrush polymer networks enabled via a side-chain interlocking design. MATERIALS HORIZONS 2023; 10:2128-2138. [PMID: 36946355 DOI: 10.1039/d3mh00274h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploring novel healing mechanisms is a constant impetus for the development of self-healing materials. Herein, we find that side-chain interlocking of bottlebrush polymers can form a dynamic network and thereby serve as a driving force for the self-healing process of the materials. Molecular dynamics simulation indicates that the interlocking is formed by the interpenetration between the long side chains of adjacent molecules and stabilized by van der Waals interactions and molecular entanglements of side chains. The interlocking can be tailored by changing the length and density of the side chains through atom transfer radical polymerization. As a result, the optimized bottlebrush polymer shows a healing efficiency of up to 100%. Unlike chemical interactions, side-chain interlocking eliminates the introduction of specific chemical groups. Therefore, bottlebrush polymers can even self-heal under harsh aqueous conditions, including acid and alkali solutions. Moreover, the highly dynamic side-chain interlocking enables bottlebrush polymers to efficiently dissipate vibration energy, and thus they can be used as damping materials. Collectively, side-chain interlocking expands the scope of physical interactions in self-healing materials and hews out a versatile way for polymers to accomplish self-healing capability in various environments.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Tongkui Yue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Linjun Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Zhengtian Xie
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology Interdisciplinary Research Center for Artificial Intelligence, Beijing University of Chemical Technology Beijing 100029, P. R. China.
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University Chengdu 610065, P. R. China.
| |
Collapse
|
6
|
Zhang Z, Fang Y, Chen Q, Duan P, Wu X, Zhang L, Wu W, Liu J. Molecular dynamics simulation of the impact of the surface topology of carbon black on the mechanical properties of elastomer nanocomposites. Phys Chem Chem Phys 2023; 25:5602-5612. [PMID: 36727525 DOI: 10.1039/d2cp04996a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon black has always played a pivotal role in reinforcing elastomers because it remarkably improves the mechanical properties. The reinforcing effect of carbon black is influenced by its grades, which mainly depend on the difference in the structure of the carbon black particles. Despite many traditional experiments on the performance of carbon black composites, there has been less emphasis on reinforcement mechanisms due to the challenges associated with unraveling the intermolecular interactions. In this paper, a coarse grained molecular dynamics simulation was employed to examine the relationship between the morphology of the carbon black particles and the mechanical properties of the elastomer nanocomposites. Specifically, three different morphological carbon black nanoparticle models, including the smooth particle model, rough particle model, and the rough ellipsoid model, were constructed first. We then focused on investigating the changes of the mechanical properties by systematically varying the filling fraction of the carbon black particles, and the strength of the interfacial interaction between the filler and the rubber. The results indicated that the surface roughness and the filler's shape had a significant impact on the mechanical properties of the filled rubber models. The mechanical enhancement effect of the rough ellipsoidal carbon black is around 50-400% higher than that of the smooth carbon black, and the stronger the interfacial interactions, the more pronounced the enhancement. In addition, the rough ellipsoid filled system has low hysteresis, low permanent deformation, and high fatigue resistance. In general, this work explores the strengthening mechanism of carbon black on the elastomer at the molecular level and generates new insight into the design and fabrication of novel reinforcing fillers.
Collapse
Affiliation(s)
- Ziyi Zhang
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yue Fang
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qionghai Chen
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Pengwei Duan
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaohui Wu
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liqun Zhang
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenjie Wu
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Liu
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing, 100029, China. .,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China.,State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Fan ZW, Jin XL, Chen Y, Lu M, Wang YR, Yue K, Wen T, Tang L, Wu ZL, Sun T. Topology and Dynamic Regulations of Comb-like Polymers as Strong Adhesives. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Zhi Wei Fan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiao Lin Jin
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yang Chen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mengze Lu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yi Ru Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kan Yue
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tao Wen
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Liqun Tang
- School of Civil Engineering and Transportation, South China University of Technology, No. 381, Wushan Road, Guangzhou 510640, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Taolin Sun
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Shi R, Wang X, Song X, Zhan B, Xu X, He J, Zhao S. Tensile Performance and Viscoelastic Properties of Rubber Nanocomposites Filled with Silica Nanoparticles: A Molecular Dynamics Simulation Study. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Structural Investigation of Aaptourinamine by a Novel Module-Assembly-Based Calculation. Mar Drugs 2022; 20:md20100649. [PMID: 36286473 PMCID: PMC9604825 DOI: 10.3390/md20100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have various and complicated structures, which is still a challenge for elucidating these compounds, especially for those lacking two-dimensional nuclear magnetic resonance (2D NMR) correlations mainly caused by high C/H ratios or proton-deficient and multiple heteroatoms through the conventional structural analytical methods. We reported a novel module-assembly calculation method named Dooerafa, which included constructing the meta-structures by a grafting method based on the crucial and the limited 2D NMR correlations, ring-contraction strategy based on mechanic force field and quantum chemical theory, and self-assemble calculation in Python programming for shaping up the structural candidates along with DFT-GIAO calculation. This new method, verified by a known alkaloid spiroreticulatine with the structure determined by X-ray diffraction, was performed for the structural elucidation of aaptourinamine isolated from marine sponge Aaptos suberitoides, showing us a brand new scaffold of imidazo [4,5,1-ij]pyrrolo [3,2-f]quinolin-7(8H)-one, which has a biosynthetic relationship with the bioactive and structurally unique aaptamine alkaloid.
Collapse
|
10
|
Yin R, Zhao Y, Gorczyński A, Szczepaniak G, Sun M, Fu L, Kim K, Wu H, Bockstaller MR, Matyjaszewski K. Alternating Methyl Methacrylate/ n-Butyl Acrylate Copolymer Prepared by Atom Transfer Radical Polymerization. ACS Macro Lett 2022; 11:1217-1223. [PMID: 36194204 DOI: 10.1021/acsmacrolett.2c00517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(methyl methacrylate/n-butyl acrylate) [P(MMA/BA)] copolymer with an alternating structure was synthesized via an activator regenerated by electron transfer (ARGET) atom transfer radical (co)polymerization (ATRP) of 2-ethylfenchyl methacrylate (EFMA) and n-butyl acrylate (BA) with subsequent postpolymerization modifications (PPM). Due to the steric hindrance of the bulky pendant group of EFMA, as well as the low reactivity ratio of BA in copolymerization with methacrylates, copolymerization of EFMA and BA generated a copolymer with a high content of alternating dyads. A subsequent PPM procedure of the alternating EFMA/BA copolymer was comprised of the hydrolysis of a tertiary ester by trifluoroacetic acid and methylation by (trimethylsilyl)diazomethane. After the modifications, the architecture of the obtained alternating MMA/BA copolymers was compared with gradient and statistical copolymers with overall similar compositions, molecular weights, and dispersities. 13C NMR indicated the absence of either MMA/MMA/MMA or BA/BA/BA sequences, in contrast to an abundance of homotriads in either the statistical or especially in the gradient copolymer. All three copolymers had similar glass transition temperatures, as measured by differential scanning calorimetry (DSC), but the alternating copolymer had the narrowest range of glass transition.
Collapse
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Khidong Kim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Liu M, Huang H, Li S, Chen Z, Liu J, Zeng X, Zhang L. Versatilely Manipulating the Mechanical Properties of Polymer Nanocomposites by Incorporating Porous Fillers: A Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10150-10161. [PMID: 35948115 DOI: 10.1021/acs.langmuir.2c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer nanocomposites (PNCs) have been attracting myriad scientific and technological attention due to their promising mechanical and functional properties. However, there remains a need for an efficient method that can further strengthen the mechanical performance of PNCs. Here, we propose a strategy to design and fabricate novel PNCs by incorporating porous fillers (PFs) such as metal-organic frameworks with ultrahigh specific surface areas and tunable nanospaces to polymer matrices via coarse-grained molecular dynamics simulations. Three important parameters─the polymer chain stiffness (k), the interaction strength between the PF center and the end functional groups of polymer chains (εcenter end), and the PF weight fraction (w)─are systematically examined. First, attributed to the penetration of polymer chains into PFs at a strong εcenter end, the dimension of polymer chains such as the radius of gyration and the end-to-end distance increases greatly as a function of k compared to the case of the neat polymer system. The penetration of polymer chains is validated by characterizing the radial distribution function between end functional groups and filler centers, as well as the visualization of the snapshots. Also, the dispersion state of PFs tends to be good because of the chain penetration. Then, the glass transition temperature ratio of PNCs to that of the neat systems exhibits a maximum in the case of k = 5ε, indicating that the strongest interlocking between polymer chains and PFs occurs at intermediate chain stiffness. The polymer chain dynamics of PNCs decreases to a plateau at k = 5ε and then becomes stable, and the relative mobility to that of the neat system as well presents the same variation trend. Furthermore, the mechanical property under uniaxial deformation is thoroughly studied, and intermediates k, εcenter end, and w can bring about the best mechanical property. This is because of the robust penetration and interaction, which is confirmed by calculating the stress of every component of PNCs with and without end functional groups and PF centers as well as the nonbonded interaction energy change between different components. Finally, the optimal condition (k = 5.36ε, εcenter end = 5.29ε, and w = 6.54%) to design the PNC with superior mechanical behavior is predicted by Gaussian process regression, an active machine learning (ML) method. Overall, incorporating PFs greatly enhances the entanglements and interactions between polymer chains and nanofillers and brings effective mechanical reinforcements with lower filler weight fractions. We anticipate that this will provide new routes to the design of mechanically reinforced PNCs.
Collapse
Affiliation(s)
- Minghui Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haifeng Huang
- CETC Big Data Research Institution Co. Ltd., Guiyang 550081, People's Republic of China
| | - Sai Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhudan Chen
- Institute of Automation, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
12
|
Chen J, Li C, Jia H, Shen Z, Zhao R, Su T, Xiang B, Wang X, Boukhvalov DW, Luo Z, Luo Y. Novel Molecular-Level Insight into the Self-Healing Behavior and Mechanism of Polyurethane-Urea Elastomer Based on a Noncovalent Strategy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jialiang Chen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Chichao Li
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Huan Jia
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhihua Shen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Rong Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Xiang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiujuan Wang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | | | - Zhenyang Luo
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yanlong Luo
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Zhao H, Wei X, Fang Y, Gao K, Yue T, Zhang L, Ganesan V, Meng F, Liu J. Molecular Dynamics Simulation of the Structural, Mechanical, and Reprocessing Properties of Vitrimers Based on a Dynamic Covalent Polymer Network. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hengheng Zhao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Xuefeng Wei
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Fang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Ke Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Tongkui Yue
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Venkat Ganesan
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
14
|
Hou G, Li S, Liu J, Weng Y, Zhang L. Designing high performance polymer nanocomposites by incorporating robustness-controlled polymeric nanoparticles: insights from molecular dynamics. Phys Chem Chem Phys 2022; 24:2813-2825. [PMID: 35043809 DOI: 10.1039/d1cp04254h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introducing polymeric nanoparticles into polymer matrices is an interesting topic, and the robustness of the polymeric nanoparticles is crucial for the properties of the polymer nanocomposites (PNCs). In this study, by incorporating star-shaped polymeric nanoparticles (SSPNs) into the polymer, the effect of the sphericity (η) and arm length (L) of the SSPNs on the mechanical properties of PNCs is systematically investigated, using a coarse-grained molecular dynamics simulation. In addition, the linear and spherical nanoparticles (NPs) are compared with SSPNs by fixing the approximate diameter and mass fraction of the NPs. The radial distribution function, the second virial coefficient, mean-squared displacement, bond autocorrelation function, and primitive path analysis are employed to systematically characterize the structure and dynamics of these new PNCs. It is found that the dispersion of the NPs is enhanced with the increase of η, and the entanglement density reaches maximum, which both contribute to the greatest mechanical reinforcing effect. More significantly, it is found that the classical Payne effect, namely the storage as a function of the strain amplitude, decreases remarkably, and with a much smaller loss factor for these SSPN filled polymer nanocomposites, compared to conventional PNCs filled with rigid NPs. Furthermore, the change of the arm length of the SSPNs is found to exhibit the same effect on the mechanical and viscoelastic properties, as the variation of the number of the arms. In general, this work shows that these new SSPN filled polymer nanocomposites can exceed conventional PNCs, by manipulating the robustness of the SSPNs using, for example, the number and length of the arms. This research may provide guidelines for the investigation of the structure-property relationships of the topological structure of polymeric nanoparticles.
Collapse
Affiliation(s)
- Guanyi Hou
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Sai Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China. .,Center of Advanced Elastomer Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
15
|
Xu X, Li L, Seraji SM, Liu L, Jiang Z, Xu Z, Li X, Zhao S, Wang H, Song P. Bioinspired, Strong, and Tough Nanostructured Poly(vinyl alcohol)/Inositol Composites: How Hydrogen-Bond Cross-Linking Works? Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaodong Xu
- School of Engineering, Zhejiang A&F University, Hangzhou 311300 China
| | - Lujuan Li
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia
| | - Seyed Mohsen Seraji
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia
| | - Lei Liu
- School of Engineering, Zhejiang A&F University, Hangzhou 311300 China
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia
| | - Zhen Jiang
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia
| | - Zhiguang Xu
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Xin Li
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield 4300, Australia
| |
Collapse
|