1
|
Quek G, Ohayon D, Ng PR, Bazan GC. A Cross-linked n-Type Conjugated Polymer with Polar Side Chains Enables Ultrafast Pseudocapacitive Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401395. [PMID: 38497830 DOI: 10.1002/smll.202401395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Pseudocapacitors bridge the performance gap between batteries and electric double-layer capacitors by storing energy via a combination of fast surface/near-surface Faradaic redox processes and electrical double-layer capacitance. Organic semiconductors are an emerging class of pseudocapacitive materials that benefit from facile synthetic tunability and mixed ionic-electronic conduction. Reported examples are mostly limited to p-type (electron-donating) conjugated polymers, while n-type (electron-accepting) examples remain comparatively underexplored. This work introduces a new cross-linked n-type conjugated polymer, spiro-NDI-N, strategically designed with polar tertiary amine side chains. This molecular design aims to synergistically increase the electroactive surface area and boost ion transport for efficient ionic-electronic coupling. Spiro-NDI-N demonstrates excellent pseudocapacitive energy storage performance in pH-neutral aqueous electrolytes, with specific capacitance values of up to 532 F g-1 at 5 A g-1 and stable cycling over 5000 cycles. Moreover, it maintains a rate capability of 307 F g-1 at 350 A g-1. The superior pseudocapacitive performance of spiro-NDI-N, compared to strategically designed structural analogues lacking either the cross-linked backbone or polar side chains, validates the essential role of its molecular design elements. More broadly, the design and performance of spiro-NDI-N provide a novel strategy for developing high-performance organic pseudocapacitors.
Collapse
Affiliation(s)
- Glenn Quek
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - David Ohayon
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Pei Rou Ng
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
- Department of Materials Science & Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Guillermo C Bazan
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
2
|
Shreteh K, Murugesan S, Alkrenawi I, Afik N, Volokh M, Mokari T. Unconventional Synthesis of Metal (Ni, Co, Ag) Antimony Alloy Particles. Inorg Chem 2024; 63:431-440. [PMID: 38105628 DOI: 10.1021/acs.inorgchem.3c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Bimetallic alloy materials attract interest owing to their properties and stability compared to pure metals, especially alloys with nanoscale dimensions. Metal antimony (MSb) alloys, specifically NiSb, are widely used for charge storage applications due to their high stability. Most synthetic approaches to form these materials require drastic conditions (e.g., high temperatures, potent reducing agents, and extended reaction times), limiting control over the final morphology. The other viable approach is a galvanic replacement that uses unstable materials as precursors. In this work, we present a new and facile method to prepare several MSb (M = Ni, Co, Ag) alloys with shape control by reacting Sb2S3 particles with a metal(M)-sulfide single source precursor in trioctylphosphine (TOP) under mild conditions. Furthermore, we explore the role of TOP as a reducing agent and demonstrate how both alloy constituents are crucial for mutual stabilization. Electrochemical studies are also performed on these NiSb particles, showing their ambipolar nature and allowing their utilization as the active ingredient in the demonstrated high-energy-density symmetric supercapacitor.
Collapse
Affiliation(s)
- Karam Shreteh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandhiya Murugesan
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Iman Alkrenawi
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Noa Afik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Michael Volokh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Taleb Mokari
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
3
|
Redox-active conjugated microporous polymers as electron-accepting organic pseudocapacitor electrode materials for flexible energy storage. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Lu Y, Cai Y, Zhang Q, Chen J. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104150. [PMID: 34617334 DOI: 10.1002/adma.202104150] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Organic carbonyl electrode materials have shown great prospects for rechargeable batteries in view of their high capacity, flexible designability, and sustainable production. However, organic carbonyl electrode materials still suffer from unsatisfactory electrochemical performance, which is highly relevant to their redox processes. Herein, an in-depth understanding on redox processes and the correlated electrochemical performance of organic carbonyl electrode materials is provided. The redox processes discussed mainly involve molecular structure evolution (intermediates), crystal structure evolution (phase transition), and charge storage mechanisms. The properties of intermediates can affect voltage, cycling stability, reversible capacity, and rate performance of batteries. Moreover, the reversible capacity/cycling stability and rate performance would be also influenced by phase transition and charge storage mechanisms (diffusion- or surface-controlled), respectively. To accelerate the practical applications of organic carbonyl electrode materials, future work should focus on developing more in situ or operando characterization techniques and further understanding the intrinsic relationships between redox processes and performance. It is hoped that the work discussed herein will stimulate more attention to the detailed redox processes and their correlations with the performance of organic carbonyl electrode materials in rechargeable batteries.
Collapse
Affiliation(s)
- Yong Lu
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yichao Cai
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiu Zhang
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Loong H, Zhou J, Jiang N, Feng Y, Xie G, Liu L, Xie Z. Photoinduced Cascading Charge Transfer in Perylene Bisimide-Based Triads. J Phys Chem B 2022; 126:2441-2448. [PMID: 35316047 DOI: 10.1021/acs.jpcb.2c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesize three perylene bisimide-based triads with donor-acceptor-acceptor (D∼A1-A2) architectures, in which the distance between D and A1 is varied to study its influence on the excited state electron processes. Very different intramolecular charge transfer (D+∼A1-A2-) lifetimes in dichloromethane (DCM) for these three triads are revealed by steady-state and transient spectroscopies. Free-energy changes of charge transfer (CT) are calculated based on the single-crystal X-ray diffraction data and electrochemical measurements. The results show that photoinduced cascading CT comprises two competing processes in DCM (CTs in D∼A1 units and in A1-A2 units) by pumping of the A1 unit, and then the long-distance CT state is formed. The charge recombination (CR) process is restrained effectively by the increased distance between the anion and cation. This research reveals the importance of multistep cascading CTs on tuning the CT lifetime in multichromophoric systems.
Collapse
Affiliation(s)
- Hao Loong
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, P. R. China
| | - Nianqiang Jiang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, P. R. China
| | - Yi Feng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, P. R. China
| | - Guojing Xie
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, P. R. China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Dulov D, Levitskiy O, Bogdanov A, Magdesieva T. Redox‐Amphoteric 4,4’‐Dicyclopropyldiphenylnitroxyl Radical: Unexpectedly High Stability. ChemistrySelect 2021. [DOI: 10.1002/slct.202102626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dmitry Dulov
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Oleg Levitskiy
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Alexey Bogdanov
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Tatiana Magdesieva
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| |
Collapse
|