1
|
Sheng Q, Tan R, Zhang X, Shen H, Zhang Z. Enhancing Mechanophore Activation through Polymer Crystallization. ACS Macro Lett 2024; 13:1670-1677. [PMID: 39568371 DOI: 10.1021/acsmacrolett.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In the field of polymer mechanochemistry, the activation of mechanophores within linear polymers in the bulk state is often limited by low activation rates. Herein, we demonstrate that the crystallization of polymers can significantly enhance the activation of mechanophores. Employing rhodamine-containing poly(lactic acid) (PLA) and polycaprolactone (PCL) as representative examples, our study reveals that the micromechanical force generated by crystallization is more effective in activating mechanophores than the macroscopic mechanical force induced by compression and ultrasonication, which is particularly pronounced for polymers with low molecular weights. Furthermore, the activation of the mechanophore is found to be positively correlated with the degree of crystallinity and polymer molecular weight, whereas the chirality of polymers does not influence the activation. This study offers new insights into mechanochemical reactions induced by polymer crystallization and provides a novel approach to enhancing mechanochemical reactivity.
Collapse
Affiliation(s)
- Qinxin Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Rui Tan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohua Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Hang Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Zhang H, Diesendruck CE. Mechanochemical Diversity in Block Copolymers. Chemistry 2024; 30:e202402632. [PMID: 39102406 DOI: 10.1002/chem.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Covalent polymer chains are known to undergo mechanochemical events when subjected to mechanical forces. Such force-coupled reactions, like C-C bond scission in homopolymers, typically occur in a non-selective manner but with a higher probability at the mid-chain. In contrast, block copolymers (BCPs), composed of two or more chemically distinct chains linked by covalent bonds, have recently been shown to exhibit significantly different mechanochemical reactivities and selectivities. These differences may be attributable to the atypical conformations adopted by their chains, compared to the regular random coil. Beyond individual molecules, when BCPs self-assemble into ordered aggregates in solution, the non-covalent interactions between the chains lead to meaningful acceleration in the activation of embedded force-sensitive motifs. Furthermore, the microphase segregation of BCPs in bulk creates periodically dispersed polydomains, locking the blocks in specific conformations which have also been shown to affect their mechanochemical reactivity, with different morphologies influencing reactivity to varying extents. This review summarizes the studies of mechanochemistry in BCPs over the past two decades, from the molecular level to assemblies, and up to bulk materials.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
3
|
Xuan M, Fan J, Khiêm VN, Zou M, Brenske KO, Mourran A, Vinokur R, Zheng L, Itskov M, Göstl R, Herrmann A. Polymer Mechanochemistry in Microbubbles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305130. [PMID: 37494284 DOI: 10.1002/adma.202305130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Polymer mechanochemistry is a promising technology to convert mechanical energy into chemical functionality by breaking covalent and supramolecular bonds site-selectively. Yet, the mechanochemical reaction rates of covalent bonds in typically used ultrasonication setups lead to reasonable conversions only after comparably long sonication times. This can be accelerated by either increasing the reactivity of the mechanoresponsive moiety or by modifying the encompassing polymer topology. Here, a microbubble system with a tailored polymer shell consisting of an N2 gas core and a mechanoresponsive disulfide-containing polymer network is presented. It is found that the mechanochemical activation of the disulfides is greatly accelerated using these microbubbles compared to commensurate solid core particles or capsules filled with liquid. Aided by computational simulations, it is found that low shell thickness, low shell stiffness and crosslink density, and a size-dependent eigenfrequency close to the used ultrasound frequency maximize the mechanochemical yield over the course of the sonication process.
Collapse
Affiliation(s)
- Mingjun Xuan
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Jilin Fan
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Vu Ngoc Khiêm
- Department of Continuum Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062, Aachen, Germany
| | - Miancheng Zou
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Kai-Oliver Brenske
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ahmed Mourran
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Rostislav Vinokur
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Lifei Zheng
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Mikhail Itskov
- Department of Continuum Mechanics, RWTH Aachen University, Eilfschornsteinstr. 18, 52062, Aachen, Germany
| | - Robert Göstl
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Andreas Herrmann
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
4
|
Lu Y, Sugita H, Mikami K, Aoki D, Otsuka H. A rational design strategy of radical-type mechanophores with thermal tolerance. Chem Sci 2023; 14:8792-8797. [PMID: 37621432 PMCID: PMC10445462 DOI: 10.1039/d3sc02991c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Radical-type mechanophores (RMs) are attractive molecules that undergo homolytic scission of their central C-C bond to afford radical species upon exposure to heat or mechanical stimuli. However, the lack of a rational design concept limits the development of RMs with pre-determined properties. Herein, we report a rational design strategy of RMs with high thermal tolerance while maintaining mechanoresponsiveness. A combined experimental and theoretical analysis revealed that the high thermal tolerance of these RMs is related to the radical-stabilization energy (RSE) as well as the Hammett and modified Swain-Lupton constants at the para-position (σp). The trend of the RSE values is in good agreement with the experimentally evaluated thermal tolerance of a series of mechanoresponsive RMs based on the bisarylcyanoacetate motif. Furthermore, the singly occupied molecular orbital (SOMO) levels clearly exhibit a negative correlation with σp within a series of RMs that are based on the same skeleton, paving the way toward the development of RMs that can be handled under ambient conditions without peroxidation.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hajime Sugita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Sagami Chemical Research Institute 2743-1 Hayakawa Ayase Kanagawa 252-1193 Japan
| | - Koichiro Mikami
- Sagami Chemical Research Institute 2743-1 Hayakawa Ayase Kanagawa 252-1193 Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan
| |
Collapse
|
5
|
Willis-Fox N, Watchorn-Rokutan E, Rognin E, Daly R. Technology pull: scale-up of polymeric mechanochemical force sensors. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
Sugita H, Lu Y, Aoki D, Otsuka H, Mikami K. Theoretical and Experimental Investigations of Stable Arylfluorene-Based Radical-Type Mechanophores. Chemistry 2023; 29:e202203249. [PMID: 36575130 DOI: 10.1002/chem.202203249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Radical-type mechanophores (RMs) can undergo homolytic cleavage of their central C-C bonds upon exposure to mechanical forces, which affords radical species. Understanding the characteristics of these radical species allows bespoke mechanoresponsive materials to be designed and developed. The thermal stability of the central C-C bonds and the oxygen tolerance of the generated radical species are crucial characteristics that determine the functions and applicability of such RM-containing mechanoresponsive materials. In this paper, we report the synthesis and characterization of two series of arylfluorene-based RM derivatives, that is, 9,9'-bis(5-methyl-2-pyridyl)-9,9'-bifluorene (BPyF) and 9,9'-bis(4,6-diphenyl-2-triazyl)-9,9'-bifluorene (BTAF). BPyF and BTAF derivatives were synthesized without generating any peroxides initially, albeit that BPyF slowly converted to the corresponding peroxide in solution. DFT calculations revealed the importance of the thermodynamic stability and the values of the α-SOMO levels of the corresponding radical species for their thermal stability and oxygen tolerance. Furthermore, the mechanochromism of BTAF was demonstrated by ball-milling a BTAF-centered polymer, which was synthesized by atom-transfer radical polymerization (ATRP).
Collapse
Affiliation(s)
- Hajime Sugita
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan.,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yi Lu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Koichiro Mikami
- Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan
| |
Collapse
|
7
|
Huang W, Feng S, Liu J, Liang B, Zhou Y, Yu M, Liang J, Huang J, Lü X, Huang W. Configuration-Induced Multichromism of Phenanthridine Derivatives: A Type of Versatile Fluorescent Probe for Microenvironmental Monitoring. Angew Chem Int Ed Engl 2023; 62:e202219337. [PMID: 36602266 DOI: 10.1002/anie.202219337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Fluorescent probes are attractive in diagnosis and sensing. However, most reported fluorophores can only detect one or few analytes/parameters, notably limiting their applications. Here we have designed three phenanthridine-based fluorophores (i.e., B1, F1, and T1 with 1D, 2D, and 3D molecular configuration, respectively) capable of monitoring various microenvironments. In rigidifying media, all fluorophores show bathochromic emissions but with different wavelength and intensity changes. Under compression, F1 shows a bathochromic emission of over 163 nm, which results in organic fluorophore-based full-color piezochromism. Moreover, both B1 and F1 exhibit an aggregation-caused quenching (ACQ) behavior, while T1 is an aggregation-induced emission (AIE) fluorophore. Further, F1 and T1 selectively concentrate in cell nucleus, whereas B1 mainly stains the cytoplasm in live cell imaging. This work provides a general design strategy of versatile fluorophores for microenvironmental monitoring.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ya Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Mengya Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiayuan Liang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Jiaguo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Watabe T, Otsuka H. Swelling-induced Mechanochromism in Multinetwork Polymers. Angew Chem Int Ed Engl 2023; 62:e202216469. [PMID: 36524463 DOI: 10.1002/anie.202216469] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We report a novel and versatile approach to achieving swelling-induced mechanochemistry using a multinetwork (MN) strategy that enables polymer networks to repeatedly swell with monomers and solvents. The isotropic expansion of the first network (FN) provides sufficient force to drive the mechanochemical scission of a radical-based mechanophore, difluorenylsuccinonitrile (DFSN). Although prompt recombination generally occurs in such highly mobile environments, the resulting pink radicals are kinetically stabilized in the gels, probably due to limited diffusion in the extended polymer chains. Moreover, the DFSN embedded in the isotropically strained chain exhibits increased thermal reactivity, which can be reasonably explained by an entropic contribution of the FN to the dissociation. The utility of the MN polymers is demonstrated not only in terms of swelling-force-induced network modification, but also in the context of tunable reactivity of the dissociative unit through proper design of the hierarchical network architecture.
Collapse
Affiliation(s)
- Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
9
|
Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL. Covalent Mechanochemistry and Contemporary Polymer Network Chemistry: A Marriage in the Making. J Am Chem Soc 2023; 145:751-768. [PMID: 36599076 DOI: 10.1021/jacs.2c09623] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed.
Collapse
Affiliation(s)
- Evan M Lloyd
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Jafer R Vakil
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Nancy R Sottos
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States.,Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| |
Collapse
|
10
|
Yildiz D, Göstl R, Herrmann A. Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry. Chem Sci 2022; 13:13708-13719. [PMID: 36544723 PMCID: PMC9709924 DOI: 10.1039/d2sc05196f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Active pharmaceutical ingredients are the most consequential and widely employed treatment in medicine although they suffer from many systematic limitations, particularly off-target activity and toxicity. To mitigate these effects, stimuli-responsive controlled delivery and release strategies for drugs are being developed. Fueled by the field of polymer mechanochemistry, recently new molecular technologies enabled the emergence of force as an unprecedented stimulus for this purpose by using ultrasound. In this research area, termed sonopharmacology, mechanophores bearing drug molecules are incorporated within biocompatible macromolecular scaffolds as preprogrammed, latent moieties. This review presents the novelties in controlling drug activation, monitoring, and release by ultrasound, while discussing the limitations and challenges for future developments.
Collapse
Affiliation(s)
- Deniz Yildiz
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52056 Aachen Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 1 52074 Aachen Germany
| |
Collapse
|
11
|
Hernández JG. Polymer and small molecule mechanochemistry: closer than ever. Beilstein J Org Chem 2022; 18:1225-1235. [PMID: 36158177 PMCID: PMC9490067 DOI: 10.3762/bjoc.18.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
The formation and scission of chemical bonds facilitated by mechanical force (mechanochemistry) can be accomplished through various experimental strategies. Among them, ultrasonication of polymeric matrices and ball milling of reaction partners have become the two leading approaches to carry out polymer and small molecule mechanochemistry, respectively. Often, the methodological differences between these practical strategies seem to have created two seemingly distinct lines of thought within the field of mechanochemistry. However, in this Perspective article, the reader will encounter a series of studies in which some aspects believed to be inherently related to either polymer or small molecule mechanochemistry sometimes overlap, evidencing the connection between both approaches.
Collapse
Affiliation(s)
- José G Hernández
- Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia
| |
Collapse
|
12
|
Wu M, Li Y, Yuan W, De Bo G, Cao Y, Chen Y. Cooperative and Geometry-Dependent Mechanochromic Reactivity through Aromatic Fusion of Two Rhodamines in Polymers. J Am Chem Soc 2022; 144:17120-17128. [PMID: 36070612 DOI: 10.1021/jacs.2c07015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique topological features of Piezo proteins underlie the lever-like cellular mechanotransduction mechanism. This knowledge inspires us to seek topological/geometric control of mechanochromophores with unprecedentedly amplified, synergistic changes in polymers to serve as ideal stress probes. Here, by judicious placement of two spirolactam rings into aminobenzopyranoxanthene, a series of stereo- and regio-isomeric rhodamine-like mechanophores are developed. With two labile bonds closely coupled into one rigidified scaffold, these π-fused bis-mechanophores enable mechanochromic polymers, featuring cooperative bond scission, low rupture force (lower than rhodamine), and geometry-controlled ring-opening reactivity. Sonication, single-molecule force spectroscopy experiments, and density functional theory calculations provide insight into the force-color relationship and rationalize how the difference in reactivity of the four isomeric mechanophores is affected by their molecular geometry and thermodynamic equilibrium. Our strategy based on the aromatic fusion of bis-mechanophore promises a modular approach to isomeric mechanophores for cooperative bond scission. Also, important insights into internal and external factors governing tandem mechanochemical reactions are gained.
Collapse
Affiliation(s)
- Mengjiao Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Yuan
- Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yulan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
13
|
Qiu W, Scofield JMP, Gurr PA, Qiao GG. Mechanochromophore-linked Polymeric Materials with Visible Color Changes. Macromol Rapid Commun 2022; 43:e2100866. [PMID: 35338794 DOI: 10.1002/marc.202100866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Mechanical force as a type of stimuli for smart materials has obtained much attention in the past decade. Color-changing materials in response to mechanical stimuli have shown great potential in the applications such as sensors and displays. Mechanochromophore-linked polymeric materials, which are a growing sub-class of these materials, are discussed in detail in this review. Two main types of mechanochromophores which exhibit visible color change, summarized herein, involve either isomerization or radical generation mechanisms. This review focuses on their synthesis and incorporation into polymer matrices, the type of mechanical force used, factors affecting the mechanochromic properties, and their applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wenlian Qiu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joel M P Scofield
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul A Gurr
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
14
|
Kasori R, Watabe T, Aoki D, Otsuka H. Enhancement of Mechanophore Activation by Electrostatic Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryosuke Kasori
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
15
|
Abstract
Mechanochromic cyclodextrins (MCDs) that can generate blue radical species, which are exceptionally stable toward atmospheric oxygen and can thus be quantitatively characterized via electron paramagnetic resonance (EPR) spectroscopy, were synthesized. MCDs have a defined structure that consists of a diarylbibenzofuranone skeleton mechanophore sandwiched between two CDs. Grinding tests and EPR measurements of the MCDs revealed their high mechanoresponsiveness, reflecting the inherent rigidity of the CDs and the formation of a supramolecular structure in the bulk.
Collapse
Affiliation(s)
- Yuki Sugita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. .,JST-PRESTO, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masatoshi Tokita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
16
|
Kim D, Kwon MS, Lee CW. Mechanochromic polymers with a multimodal chromic transition: mechanophore design and transduction mechanism. Polym Chem 2022. [DOI: 10.1039/d2py00435f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents the recent progress in multi-chromic polymers embedded with mechanophores concentrating on transduction mechanisms and design concepts.
Collapse
Affiliation(s)
- Daewhan Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chung Whan Lee
- Department of Chemistry, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
17
|
Abstract
AbstractThis Account covers the recent progress made on heterocyclic mechanophores in the field of polymer mechanochemistry. In particular, the types of such mechanophores as well as the mechanisms and applications of their force-induced structural transformations are discussed and related perspectives and future challenges proposed.1 Introduction2 Types of Mechanophores3 Methods to Incorporate Heterocycle Mechanophores into Polymer Systems4 Mechanochemical Reactions of Heterocyclic Mechanophores4.1 Three-Membered-Ring Mechanophores4.2 Four-Membered-Ring Mechanophores4.3 Six-Membered-Ring Mechanophores4.4 Bicyclic Mechanophores5 Applications5.1 Cross-Linking of Polymer5.2 Degradable Polymer5.3 Mechanochromic Polymer6 Concluding Remarks and Outlook
Collapse
|
18
|
Qi Q, Sekhon G, Chandradat R, Ofodum NM, Shen T, Scrimgeour J, Joy M, Wriedt M, Jayathirtha M, Darie CC, Shipp DA, Liu X, Lu X. Force-Induced Near-Infrared Chromism of Mechanophore-Linked Polymers. J Am Chem Soc 2021; 143:17337-17343. [PMID: 34586805 DOI: 10.1021/jacs.1c05923] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A near-infrared (NIR) mechanophore was developed and incorporated into a poly(methyl acrylate) chain to showcase the first force-induced NIR chromism in polymeric materials. This mechanophore, based on benzo[1,3]oxazine (OX) fused with a heptamethine cyanine moiety, exhibited NIR mechanochromism in solution, thin-film, and bulk states. The mechanochemical activity was validated using UV-vis-NIR absorption/fluorescence spectroscopies, gel permeation chromatography (GPC), NMR, and DFT simulations. Our work demonstrates that NIR mechanochromic polymers have considerable potential in mechanical force sensing, damage detection, bioimaging, and biomechanics.
Collapse
Affiliation(s)
| | | | | | | | - Tianruo Shen
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | | | | | | | | | | | | | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | | |
Collapse
|
19
|
Noh J, Peterson GI, Choi T. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Gregory I. Peterson
- Department of Chemistry Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
20
|
Noh J, Peterson GI, Choi TL. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angew Chem Int Ed Engl 2021; 60:18651-18659. [PMID: 34101320 DOI: 10.1002/anie.202104447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Indexed: 12/23/2022]
Abstract
We explored the mechanochemical degradation of bottlebrush and dendronized polymers in solution (with ultrasonication, US) and solid states (with ball-mill grinding, BMG). Over 50 polymers were prepared with varying backbone length and arm architecture, composition, and size. With US, we found that bottlebrush and dendronized polymers exhibited consistent backbone scission behavior, which was related to their elongated conformations in solution. Considerably different behavior was observed with BMG, as arm architecture and composition had a significant impact on backbone scission rates. Arm scission was also observed for bottlebrush polymers in both solution and solid states, but only in the solid state for dendronized polymers. Motivated by these results, multi-mechanophore polymers with bottlebrush and dendronized polymer architectures were prepared and their reactivity was compared. Although dendronized polymers showed slower arm-scission, the selectivity for mechanophore activation was much higher. Overall, these results have important implications to the development of new mechanoresponsive materials.
Collapse
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
21
|
Peterson GI, Choi TL. The influence of polymer architecture in polymer mechanochemistry. Chem Commun (Camb) 2021; 57:6465-6474. [PMID: 34132272 DOI: 10.1039/d1cc02501e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymer architecture is an important factor in polymer mechanochemistry. In this Feature Article, we summarize recent developments in utilizing polymer architecture to modulate mechanochemical reactions within polymers, or more specifically, the location and rates of bond scission events that lead to polymer fragmentation or mechanophore activation. Various well-defined architectures have been explored, including those of cyclic, intramolecularly cross-linked, dendritic, star, bottlebrush, and dendronized polymers. We primarily focus on describing the enhancement or suppression of mechanochemical reactivity, with respect to analogous linear polymers, as well as differences in solution- and solid-state behavior.
Collapse
Affiliation(s)
- Gregory I Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | | |
Collapse
|