1
|
Borisov K, Kalinina A, Bystrova A, Muzafarov A. Aerogel-Like Material Based on PEGylated Hyperbranched Polymethylethoxysiloxane. Polymers (Basel) 2023; 15:4012. [PMID: 37836061 PMCID: PMC10574835 DOI: 10.3390/polym15194012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Aerogels are a class of materials that have gained increasing attention over the past several decades due to their exceptional physical and chemical properties. These materials are highly porous, with a low density and high surface area, allowing for applications such as insulation, catalysis, and energy storage. However, traditional aerogels, such as pure silica aerogels, suffer from brittleness and fragility, which limit their usefulness in many applications. Herein, we have addressed this problem by using organosilicon compounds, namely polymethylsilsesquioxane derivatives, for the synthesis of aerogel-like materials. Specifically, we have developed a novel approach involving surfactant-free synthesis of microcapsules from partially PEGylated hyperbranched polymethylethoxysiloxane. Due to the highly diphilic nature of these compounds, they readily concentrate at the oil/water interface in aqueous emulsions encapsulating oil droplets. During the subsequent condensation, the organosilicon precursor is consumed for hexane encapsulation (yielding hollow microcapsules) followed by the formation of a continuous condensed phase. Concurrently, methyl groups ensure the hydrophobicity of the resulting materials, which eliminates the need of using additional reagents for their hydrophobization.
Collapse
Affiliation(s)
- Kirill Borisov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia; (K.B.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
| | - Alexandra Kalinina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia; (K.B.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
| | - Aleksandra Bystrova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia; (K.B.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
| | - Aziz Muzafarov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia; (K.B.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia
| |
Collapse
|
2
|
Goncharova IK, Kutumov SP, Novikov RA, Shiryaeva TY, Volodin AD, Korlyukov AA, Arzumanyan AV. The selective synthesis of di- and cyclosiloxanes bearing several hidden p-tolyl-functionalities. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Goncharova IK, Tukhvatshin RS, Novikov RA, Volodin AD, Korlyukov AA, Lakhtin VG, Arzumanyan A. Complementary Cooperative Catalytic Systems in the Aerobic Oxidation of a Wide Range of Si–H‐Reagents to Si–OH‐Products: From Monomers to Oligomers and Polymers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Irina K. Goncharova
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organoelements compounds RUSSIAN FEDERATION
| | - Rinat S. Tukhvatshin
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organoelements compounds RUSSIAN FEDERATION
| | - Roman A. Novikov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Organic chemistry RUSSIAN FEDERATION
| | - Alexander D. Volodin
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organoelements compounds RUSSIAN FEDERATION
| | - Alexander A. Korlyukov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organoelements compounds RUSSIAN FEDERATION
| | - Valentin G. Lakhtin
- A V Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences: Institut neftehimiceskogo sinteza imeni A V Topcieva Rossijskaa akademia nauk Organoelements compounds RUSSIAN FEDERATION
| | - Ashot Arzumanyan
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Chemistry 28 Vavilov str. 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
4
|
Sizov VE, Zefirov VV, Gallyamov MO, Muzafarov AM. Organosilicone Compounds in Supercritical Carbon Dioxide. Polymers (Basel) 2022; 14:2367. [PMID: 35745943 PMCID: PMC9229767 DOI: 10.3390/polym14122367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
This review considers the key advantages of using supercritical carbon dioxide as a solvent for systems with organosilicon compounds. Organosilicon polymeric materials synthesis as well as the creation and modification of composites based on them are discussed. Polydimethylsiloxane and analogues used as polymerization stabilizers and nucleation promoters in pore formation processes are analyzed as well.
Collapse
Affiliation(s)
- Victor E. Sizov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia;
| | - Vadim V. Zefirov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Marat O. Gallyamov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia;
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Aziz M. Muzafarov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393 Moscow, Russia;
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
5
|
Minyaylo EO, Kudryavtseva AI, Zubova VY, Anisimov AA, Zaitsev AV, Ol'shevskaya VA, Dolgushin FM, Peregudov AS, Muzafarov AM. Synthesis of mono- and polyfunctional organosilicon derivatives of polyhedral carboranes for the preparation of hybrid polymer materials. NEW J CHEM 2022. [DOI: 10.1039/d2nj01266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of mono- and polyfunctional carborane organosilicon derivatives were prepared with good yields based on the hydrosilylation reactions of allylcarboranes with hydride-containing organosilicon compounds such as tetramethyldisiloxane, decamethylpentasiloxane and triethoxysilane in the presence of Karstedt's catalyst.
Collapse
Affiliation(s)
- E. O. Minyaylo
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. I. Kudryavtseva
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - V. Y. Zubova
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - A. A. Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. V. Zaitsev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - V. A. Ol'shevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - F. M. Dolgushin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A. S. Peregudov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - A. M. Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Platonov DN, Kholodkov DN, Goncharova IK, Belaya MA, Tkachev YV, Dorovatovskii PV, Volodin AD, Korlyukov AA, Tomilov YV, Arzumanyan AV, Novikov RA. Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph3C3)2Pt3(MeCN)4]2+(BF4–)2: Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reactions. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dmitry N. Platonov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Dmitry N. Kholodkov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Irina K. Goncharova
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russian Federation
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Maria A. Belaya
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991 Moscow, Russian Federation
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., 123182 Moscow, Russian Federation
| | - Alexander D. Volodin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Alexander A. Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Yury V. Tomilov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ashot V. Arzumanyan
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russian Federation
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119991, Moscow, Russian Federation
| | - Roman A. Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov st., 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
Kholodkov DN, Eremchuk KI, Soldatkin YV, Volodin AD, Korlyukov AA, Anisimov AA, Novikov RA, Arzumanyan AV. Stereoregular cyclic p-tolyl-siloxanes with alkyl, O- and N-containing groups as promising reagents for the synthesis of functionalized organosiloxanes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01222c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Preparation methodology for a series of hydrophobic and amphiphilic well-defined stereoregular cyclic p-tolyl-substituted siloxanes has been proposed.
Collapse
Affiliation(s)
- Dmitry N. Kholodkov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Kseniia I. Eremchuk
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Yuri V. Soldatkin
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Alexander D. Volodin
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Alexander A. Korlyukov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Anton A. Anisimov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Roman A. Novikov
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 47 Leninsky Pr
- Moscow 119991
- Russian Federation
| | - Ashot V. Arzumanyan
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| |
Collapse
|