1
|
Ramírez Marrero I, Kaiser N, von Vacano B, Konradi R, Crosby AJ, Perry SL. Brittle-to-Ductile Transitions of Polyelectrolyte Complexes: Humidity, Temperature, and Salt. Macromolecules 2025; 58:2925-2938. [PMID: 40160992 PMCID: PMC11949119 DOI: 10.1021/acs.macromol.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Polyelectrolyte complexation is an entropically driven, associative phase separation that results in a polymer-rich polyelectrolyte complex (PEC) and a polymer-poor supernatant. PECs show promise as a new class of sustainable materials since they can be processed using aqueous solutions rather than organic solvents. Previous reports have looked at the mechanical properties and glass transitions of PECs as a function of temperature, relative humidity (rH), and salt concentration (CS), but establishing a universal understanding of how these parameters affect PEC mechanics has yet to be achieved. We examined the effects of temperature, rH, and CS on the mechanical properties of PECs formed from poly(methacrylic acid) and poly(trimethyl aminoethyl methacrylate) with a goal of establishing design rules for their mechanical response. Relative humidity was shown to have the most dramatic effect on the mechanical properties, with temperature and salt concentration having far less of an impact. Furthermore, we observed that the glass transition of PECs is tied to both temperature and relative humidity, creating a glass transition rHg/T g line that can be modulated by added salt. Finally, we looked at the thermodynamics behind the glass transition of PECs, which yielded similar energies as the condensation of water. We propose the use of water and/or salt as a low energy and efficient method of processing PECs for various applications.
Collapse
Affiliation(s)
- Isaac
A. Ramírez Marrero
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nadine Kaiser
- BASF
SE, Group Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany
| | | | - Rupert Konradi
- BASF
SE, Group Research, Carl Bosch Str 38, 67056 Ludwigshafen, Germany
| | - Alfred J. Crosby
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Li H, Tolmachev D, Batys P, Sammalkorpi M, Lutkenhaus JL. Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes. Macromolecules 2025; 58:292-303. [PMID: 39831290 PMCID: PMC11741136 DOI: 10.1021/acs.macromol.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature (T g). Except for glycerol, all alcohol solvents yield PECs with detectable T g's and plasticization behavior. Furthermore, a linear relationship for 1/T g and the natural logarithm of the number of hydroxyl groups to intrinsic ion pair ratio [ln(n hydroxyl/n intrinsic-ion-pair)] is found. This result is significant because prior work demonstrated the relationship only for water and no other solvents. All-atom molecular dynamics (MD) simulations analyze the ability of the solvent to form hydrogen bonds via the solvent's OH groups to the PAA, revealing that the solvent molecule size and available hydroxyl groups govern the change in the glass transition. Overall, the clear dependence of a PEC's glass transition on the solvent's chemical structure provides a simple guideline for predicting their relationship.
Collapse
Affiliation(s)
- Hongwei Li
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas 77843, United States
| | - Dmitry Tolmachev
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, 00076 Aalto, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
3
|
Shin J, Shin H, Lee SH, Jang JD, Kim HJ. Influence of Solvent Dielectric Constant on the Complex Coacervation Phase Behavior of Polymerized Ionic Liquids. ACS Macro Lett 2024; 13:1678-1685. [PMID: 39570941 DOI: 10.1021/acsmacrolett.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Complex coacervation is an associative phase separation process of oppositely charged polyelectrolyte solutions, resulting in a coacervate phase enriched with charged polymers and a polymer-lean phase. To date, studies on the phase behavior of complex coacervation have been largely restricted to aqueous systems with relatively high dielectric constants due to the limited solubility of most polyelectrolytes, hindering the exploration of the effects of electrostatic interactions from differences in solvent permittivity. Herein, we prepare two symmetric but oppositely charged polymerized ionic liquids (PILs), consisting of poly[1-[2-acryloyloxyethyl]-3-butylimidazolium bis(trifluoromethane)sulfonimide] (PAT) and poly[1-ethyl-3-methylimidazolium 3-[[[(trifluoromethyl)sulfonyl]amino]sulfonyl]propyl acrylate] (PEA). Due to the delocalized ionic charges and their chemical structure similarity, both PAT and PEA are soluble in various organic solvents with a wide range of dielectric constants, ranging from 16.7 (hexafluoro-2-propanol (HFIP)) to 66.1 (propylene carbonate (PC)). Notably, no significant correlation is observed between the solvent dielectric constant and the phase diagram of the complex coacervation of PILs. Most organic solvents lead to similar phase diagrams and salt resistances regardless of their dielectric constants, except two protic solvents (HFIP and 2,2,2-trifluoroethanol (TFE)) showing significantly low salt resistances compared to the others. The low salt resistance in these protic solvents primarily arises from strong hydrogen bonding between PILs and solvents as evidenced by 1H NMR and small-angle neutron scattering (SANS) experiments. Our finding suggests that for the coacervation of PILs, particularly those with delocalized and weak charge interactions, entropy from the counterion release and polymer-solvent interaction χ parameter play a more important role than the electrostatic interactions of charged molecules, rendered by the dielectric constant of the solvent medium.
Collapse
Affiliation(s)
- Jowon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Heewoon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Sang-Ho Lee
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| |
Collapse
|
4
|
Huang H, Liu Z, Jian H, Yao Y, Tan W, Yang S. Alginate/Chitosan Complex Fibers Reinforcement and Their Mechanical Transition Continuum With Water Uptake Increasing. Macromol Rapid Commun 2024:e2400735. [PMID: 39535452 DOI: 10.1002/marc.202400735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Living tissues span a remarkable spectrum of modulus ranging from the level of Pa to GPa in a water-rich environment. Constructing soft and hard materials that match the mechanics of tissues and researching mechanical transition in water, are beneficial for their biological applications. Here, using polyelectrolyte complex fiber as a model system and reinforcing the fiber by stepwisely introducing additional coordination and covalent bonds, this investigated that the water effect on mechanical transition behaviors. Alginate/chitosan fiber (AC fiber) has a single electrostatic bond and shows continuous mechanical transition containing a glassy state, rubbery state, and terminal relaxation (initial modulus lower than 10 MPa) in aqueous solution. Alginate/chitosan/calcium fiber (ACC fiber) has both electrostatic and coordination bonds, which shows the behavior of hard rubber (initial modulus 100 MPa) when water reaches equilibrium. Alginate/chitosan/calcium/polydopamine fiber (ACCP fiber) with triple bonds, including electrostatic, coordination, and covalent bonds, exhibits the behavior like ductile plastics in aqueous solution (initial modulus 1000 MPa). This work not only provides important insight into the toughening mechanism of polyelectrolyte complexes in water but also contributes to the preparation of tissue adaptive implantations.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zexin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hanxin Jian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yuan Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjuan Tan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
5
|
Schlicke J, Cramer C, Schönhoff M. Time-pH and time-humidity scaling of ionic conductivity spectra of polyelectrolyte multilayers. Phys Chem Chem Phys 2024; 26:26799-26807. [PMID: 39403822 DOI: 10.1039/d4cp03482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In this systematic study, ionic conductivity spectra of poly(diallyl-dimethylammonium)/poly(acrylic acid) (PDADMA/PAA)n polyelectrolyte multilayers (PEMs) are investigated regarding superposition principles. In this context, charge transport as well as charge compensation processes in polyelectrolyte assemblies are discussed. The validity of different scaling concepts is tested to differentiate between changes in the mobility and charge carrier density, caused by the variation of a parameter X, where X is either relative humidity during measurement, or salt concentration or pH during preparation. For the first time, time-X scaling for conductivity spectra of PEMs is reported for all three parameters X, resulting in individual mastercurves. Furthermore, a super-mastercurve can be obtained including variations of all three parameters. Changes in plasticization caused by either varied humidity, pH or ionic strength imply non-constant charge carrier mobilities in accordance with a Summerfield-type of scaling, while the charge carrier density remains constant. Interestingly, for preparation conditions which favor extrinsic charge compensation, significant deviations from such Summerfield-type scaling are observed, indicating a variation of the number density of mobile charge carriers with humidity.
Collapse
Affiliation(s)
- Jannis Schlicke
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
- Center for Soft Nanoscience, Busso-Peuss-Str. 10, 48149 Münster, Germany
| | - Cornelia Cramer
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
- Center for Soft Nanoscience, Busso-Peuss-Str. 10, 48149 Münster, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
- Center for Soft Nanoscience, Busso-Peuss-Str. 10, 48149 Münster, Germany
| |
Collapse
|
6
|
Lalwani S, Hellikson K, Batys P, Lutkenhaus JL. Counter Anion Type Influences the Glass Transition Temperature of Polyelectrolyte Complexes. Macromolecules 2024; 57:4695-4705. [PMID: 38827958 PMCID: PMC11140738 DOI: 10.1021/acs.macromol.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Salt acts as a plasticizer in polyelectrolyte complexes (PECs), which impacts the physical, thermal, and mechanical properties, thus having implications in applications, such as drug delivery, energy storage, and smart coatings. Added salt disrupts polycation-polyanion intrinsic ion pairs, lowering a hydrated PEC's glass transition temperature (Tg). However, the relative influence of counterion type on the PEC's Tg is not well understood. Here, the effect of anion type (NaCl, NaBr, NaNO3, and NaI) on the Tg of solid-like, hydrated PECs composed of poly(diallydimethylammonium) (PDADMA)-poly(styrenesulfonate) (PSS) is investigated. With increasing the chaotropic nature of the salt anion, the Tg decreases. The relative differences are attributed to the doping level, the amount of bound water, the mobility of water molecules within the PECs, and the strength of interactions between the PEs. For all studied salt concentrations and salt types, the Tg followed the scaling of -1/Tg ≈ ln([IP]/[H2O]), in which [IP]/[H2O] is the ratio of intrinsic pairs to water. The scaling estimates that about 7 to 17% of the intrinsic ion pairs should be weakened for the PEC to partake in a glass transition. Put together, this study highlights that the Tg in PECs is impacted by the salt anion, but the mechanism of the glass transition remains unchanged.
Collapse
Affiliation(s)
- Suvesh
Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kayla Hellikson
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL-30239, Poland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
7
|
Eneh C, Nixon K, Lalwani SM, Sammalkorpi M, Batys P, Lutkenhaus JL. Solid-Liquid-Solution Phases in Poly(diallyldimethylammonium)/Poly(acrylic acid) Polyelectrolyte Complexes at Varying Temperatures. Macromolecules 2024; 57:2363-2375. [PMID: 38495383 PMCID: PMC10938883 DOI: 10.1021/acs.macromol.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
The coacervation and complexation of oppositely charged polyelectrolytes are dependent on numerous environmental and preparatory factors, but temperature is often overlooked. Temperature effects remain unclear because the temperature dependence of both the dielectric constant and polymer-solvent interaction parameter can yield lower and/or upper critical solution phase behaviors for PECs. Further, secondary interactions, such as hydrogen bonding, can affect the temperature response of a PEC. That is, mixtures of oppositely charged polyelectrolytes can exhibit phase separation upon lowering and/or increasing the mixture's temperature. Here, the phase behavior of poly(diallylmethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes under varying KBr ionic strengths, mixing ratios, and temperatures at a fixed pH (in which PAA hydrogen bonding can occur) is examined. At room temperature, the PDADMA/PAA PECs exhibit four different phase states: precipitate, coexisting precipitate and coacervate, solid-like gel, and coacervate. Variable-temperature optical microscopy reveals the upper critical solution temperature (UCST) at which each phase transitioned to a solution state. Interestingly, the UCST value is highly dependent on the original phase of the PEC, in which solid-like precipitates exhibit higher UCST values. Large-scale all-atom molecular dynamics (MD) simulations support that precipitates exhibit kinetic trapping, which may contribute to the higher UCST values observed in the experiment. Taken together, this study highlights the significance of temperature on the phase behavior of PECs, which may play a larger role in stimuli-responsive materials, membraneless organelles, and separations applications.
Collapse
Affiliation(s)
- Chikaodinaka
I. Eneh
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kevin Nixon
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Suvesh Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science, Aalto
University, P.O. Box 16100, Aalto 00076, Finland
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto 00076, Finland
- Academy
of Finland Center of Excellence in Life-Inspired Hybrid Materials
(LIBER), Aalto University, P.O. Box 16100, Aalto 00076, Finland
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow 30-239, Poland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
8
|
Liang ZX, Chen HD, Hu CK, Fang YX, Fang YP, Lu CX, Wang J, Mi L, Chen XC. Microporous Polyelectrolyte Complexes by Hydroplastic Foaming. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1892-1901. [PMID: 38192235 DOI: 10.1021/acs.langmuir.3c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Polyelectrolyte complexes (PECs) have emerged as an attractive category of materials for their water processability and some similarities to natural biopolymers. Herein, we employ the intrinsic hydroplasticity of PEC materials to enable the generation of porous structures with the aid of gas foaming. Such foamable materials are fabricated by simply mixing polycation, polyanion, and a UV-initiated chemical foaming agent in an aqueous solution, followed by molding into thin films. The gas foaming of the PEC films can be achieved upon exposure to UV illumination under water, where the films are plasticized and the gaseous products from the photolysis of foaming agents afford the formation, expanding, and merging of numerous bubbles. The porosity and morphology of the resulting porous films can be customized by tuning film composition, foaming conditions, and especially the degree of plasticizing effect, illustrating the high flexibility of this hydroplastic foaming method. Due to the rapid initiation of gas foaming, the present method enables the formation of porous structures via an instant one-step process, much more efficient than those existing strategies for porous PEC materials. More importantly, such a pore-forming mechanism might be extended to other hydroplastic materials (e.g., biopolymers) and help to yield hydroplasticity-based processing strategies.
Collapse
Affiliation(s)
- Zi-Xuan Liang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hao-Dong Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chun-Kui Hu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yi-Xuan Fang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - You-Peng Fang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chun-Xin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jing Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Mi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
9
|
Akintola J, Chen Y, Digby ZA, Schlenoff JB. Antifouling Coatings from Glassy Polyelectrolyte Complex Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50058-50068. [PMID: 37871187 DOI: 10.1021/acsami.3c11744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Coatings that prevent or decrease fouling are sought for many applications, including those that inhibit the attachment of organisms in aquatic environments. To date, antifouling coatings have mostly followed design criteria assembled over decades: surfaces should be well/strongly hydrated, possess low net charge, and maintain a hydrophilic character when exposed to the location of use. Thus, polymers based on ethylene glycol or zwitterionic repeat units have been shown to be highly effective. Unfortunately, hydrated materials can be quite soft, limiting their use in some environments. In a major paradigm shift, this work describes glassy antifouling films made from certain complexes of positive and negative polyelectrolytes. The dense network of electrostatic interactions yields tough materials below the glass transition temperature, Tg, in normal use, while the highly ionic character of these polyelectrolyte complexes ensures strong hydration. The proximity of equal numbers of opposite charges within these complexes mimics zwitterionic structures. Films, assembled layer-by-layer from aqueous solutions, contained sulfonated poly(ether ether ketone), SPEEK, a rigid polyelectrolyte that binds strongly to a selection of quaternary ammonium polycations. Layer-by-layer buildup of SPEEK and polycations was linear, indicating strong complexes between polyelectrolytes. Calorimetry also showed that complex formation was exothermic. Surfaces coated with these films in the 100 nm thickness range completely resisted adhesion of the common flagellate green algae, Chlamydomonas reinhardtii, which were removed from surfaces at a minimum applied flow rate of 0.8 cm s-1. The total surface charge density of adsorbed cations, determined with a sensitive radioisotopic label, was very low, around 10% of a monolayer, which minimized adsorption driven by counterion release from the surface. The viscoelastic properties of the complexes, which were stable even in concentrated salt solutions, were explored using rheology of bulk samples. When fully hydrated, their Tg values were observed to be above 75 °C.
Collapse
Affiliation(s)
- John Akintola
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee, Florida 32308-4390 , United States
| | - Yuhui Chen
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee, Florida 32308-4390 , United States
| | - Zachary A Digby
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee, Florida 32308-4390 , United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee, Florida 32308-4390 , United States
| |
Collapse
|
10
|
Chowdhury A, Borgia A, Ghosh S, Sottini A, Mitra S, Eapen RS, Borgia MB, Yang T, Galvanetto N, Ivanović MT, Łukijańczuk P, Zhu R, Nettels D, Kundagrami A, Schuler B. Driving forces of the complex formation between highly charged disordered proteins. Proc Natl Acad Sci U S A 2023; 120:e2304036120. [PMID: 37796987 PMCID: PMC10576128 DOI: 10.1073/pnas.2304036120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Highly disordered complexes between oppositely charged intrinsically disordered proteins present a new paradigm of biomolecular interactions. Here, we investigate the driving forces of such interactions for the example of the highly positively charged linker histone H1 and its highly negatively charged chaperone, prothymosin α (ProTα). Temperature-dependent single-molecule Förster resonance energy transfer (FRET) experiments and isothermal titration calorimetry reveal ProTα-H1 binding to be enthalpically unfavorable, and salt-dependent affinity measurements suggest counterion release entropy to be an important thermodynamic driving force. Using single-molecule FRET, we also identify ternary complexes between ProTα and H1 in addition to the heterodimer at equilibrium and show how they contribute to the thermodynamics observed in ensemble experiments. Finally, we explain the observed thermodynamics quantitatively with a mean-field polyelectrolyte theory that treats counterion release explicitly. ProTα-H1 complex formation resembles the interactions between synthetic polyelectrolytes, and the underlying principles are likely to be of broad relevance for interactions between charged biomolecules in general.
Collapse
Affiliation(s)
- Aritra Chowdhury
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Souradeep Ghosh
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Andrea Sottini
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Soumik Mitra
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Rohan S. Eapen
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | | | - Tianjin Yang
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Nicola Galvanetto
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| | - Miloš T. Ivanović
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Paweł Łukijańczuk
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Ruijing Zhu
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Daniel Nettels
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
| | - Arindam Kundagrami
- Department of Physical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur741246, India
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich8057, Switzerland
- Department of Physics, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
11
|
Jin Z, Chen T, Liu Y, Feng W, Chen L, Wang C. Multivalent Design of Low-Entropy-Penalty Ion-Dipole Interactions for Dynamic Yet Thermostable Supramolecular Networks. J Am Chem Soc 2023; 145:3526-3534. [PMID: 36718611 DOI: 10.1021/jacs.2c12133] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dynamic supramolecular networks are constantly accompanied by thermal instability. The fundamental reason is most reversible noncovalent bonds quickly decay at elevated temperatures and dissociate below 100 °C. Here, in this paper, we realize a reversible ion-dipole interaction with high-temperature stability exceeding 150 °C. The resultant supramolecular network can simultaneously possess mechanical strength of 1.32 MPa (14.8 times that of pristine material), dynamic self-healing capability, and a stable working temperature of up to 200 °C. From the prolonged characteristic relaxation time of 600 s even at 100 °C, our material represents one of the most thermally stable dynamic supramolecular polymers. These remarkable performances are achieved by using a new multivalent yet low-entropy-penalty molecular design. In this way, the noncovalent bond can reach a high enthalpy while minimizing the entropy-dominated thermal dissociations.
Collapse
Affiliation(s)
- Zhekai Jin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Tao Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China.,Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu610032, China
| | - Yuncong Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Wenwen Feng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Lili Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Chao Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing100084, China
| |
Collapse
|
12
|
Akintola J, Digby ZA, Schlenoff JB. Polyelectrolyte Complexes as Desiccants: Thirsty Saloplastics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9962-9969. [PMID: 36749323 DOI: 10.1021/acsami.2c19934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Desiccants or drying agents are used extensively to remove water from liquids and gases. Many organic reactions, from the laboratory to the industrial scale, are sensitive to even trace amounts of water. A new class of desiccants made from complexed polyelectrolytes, PECs, is described here, exploiting the affinity of charged polymer repeat units for water. The enthalpy of hydration of dry PECs was used for the first time as a quantitative measure of PEC water affinity. Several combinations of positive, Pol+, and negative, Pol-, polymers were used to prepare PECs. All of these displayed significant exothermic (favorable) enthalpies of hydration, measured at room temperature using solution calorimetry. A PEC made from poly(diallyldimethylammonium) and poly(styrene sulfonate) was extruded into convenient shapes. This PEC was used to dry three common solvents, acetonitrile, tetrahydrofuran, and toluene, representing a range of polarities. Added water was radiolabeled with tritium to provide accurate and sensitive detection of residual water after treatment. This PEC was almost as efficient as the comparison desiccants, molecular sieve 3A and calcium sulfate, after 3 days of static drying but could be regenerated at a lower temperature (120 °C) and shed far fewer dust particles.
Collapse
Affiliation(s)
- John Akintola
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Zachary A Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| |
Collapse
|
13
|
Li J, Krishna B A, van Ewijk G, van Dijken DJ, de Vos WM, van der Gucht J. A comparison of complexation induced brittleness in PEI/PSS and PEI/NaPSS single-step coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Yang M, Sonawane SL, Digby ZA, Park JG, Schlenoff JB. Influence of “Hydrophobicity” on the Composition and Dynamics of Polyelectrolyte Complex Coacervates. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Swapnil L. Sonawane
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Jin G. Park
- High Performance Materials Institute, The Florida State University, Tallahassee Florida 32310, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
15
|
Lteif S, Akkaoui K, Abou Shaheen S, Chaaban M, Weigand S, Schlenoff JB. Gummy Nanoparticles with Glassy Shells in Electrostatic Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9611-9620. [PMID: 35877784 DOI: 10.1021/acs.langmuir.2c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanocomposites with unusual and superior properties often contain well-dispersed nanoparticles. Polydimethylsiloxane, PDMS, offers a fluidlike or rubbery (when cross-linked) response, which complements the high-modulus nature of inorganic nanofillers. Systems using PDMS as the nanoparticulate, rather than the continuous, phase are rare because it is difficult to make PDMS nanoparticles. Aqueous dispersions of hydrophobic polymer nanoparticles must survive the considerable contrast in hydrophobicity between water and the polymer component. This challenge is often met with a shell of hydrophilic polymer or by adding surfactant. In the present work, two critical advances for making and using aqueous colloidal dispersions of PDMS are reported. First, PDMS nanoparticles with charged amino end groups were prepared by flash nanoprecipitation in aqueous solutions. Adding a negative polyelectrolyte, poly(styrene sulfonate), PSS, endowed the nanoparticles with a glassy shell, stabilizing them against aggregation. Second, when compressed into a nanocomposite, the small amount of PSS leads to a large increase in bulk modulus. X-ray scattering studies revealed the hierarchical nanostructuring within the composite, with a 4 nm PDMS micelle as the smallest unit. This class of nanoparticle and nanocomposite presents a new paradigm for stabilizing liquidlike building blocks for nanomaterials.
Collapse
Affiliation(s)
- Sandrine Lteif
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Khalil Akkaoui
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Maya Chaaban
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| | - Steven Weigand
- DND-CAT Synchrotron Research Center, Northwestern University, APS/ANL 432-A005, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
16
|
Aquino Queirós MV, Loh W. How to Predict the Order of Phase Separation of Polyelectrolyte Complexes and Their Miscibility. J Phys Chem B 2022; 126:5362-5373. [PMID: 35819870 DOI: 10.1021/acs.jpcb.2c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mixture of two oppositely charged polyelectrolyte solutions results in complexation that may lead to an associative phase separation, forming a highly concentrated phase in both polyelectrolytes in equilibrium with a dilute phase. In this work, we aim to investigate what controls the order of complexation when more polyelectrolytes of the same charge are present. For this, the effect of the addition of a third oppositely charged polyelectrolyte in a mixture of two polyelectrolytes with the same charge was studied. Our results show that, under certain conditions, the electrostatic complexation takes place selectively, where one polyanion (or polycation) phase separates first, followed by the other phase separation, with both complexes at their 1:1 charge stoichiometry. Infrared analyses of the phase-separated complexes confirmed that, in a mixture of polyanions, poly(styrenesulfonate) is complexed first, followed by poly(acrylate). For polycations, these analyses showed that poly(diallyldimethylammonium) is preferentially complexed over poly(allylamine). These results suggest that electrostatic complexation occurs following the sequence predicted as in an acid/base titration, where the acidic/basic strength of the involved polyions dictates which one is complexed first. In this respect, the order of complexation can be associated with the equivalence pH for each pair, which we propose can be used as a parameter to predict phase separation in polyelectrolyte mixtures. In addition, we have investigated the miscibility of these complex mixtures, confirming that multiphasic complexes are formed whenever the polyions display ionizable groups with different acid/basic strengths and that this can also be related to their equivalence pH.
Collapse
Affiliation(s)
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
17
|
Chae MK, Lee NK, Jung Y, Joanny JF, Johner A. Structure of a Hydrophobic Polyelectrolyte Chain with a Random Sequence. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Min-Kyung Chae
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea
| | - Nam-Kyung Lee
- Department of Physics and Astronomy, Sejong University, Seoul 05006, Korea
| | - Youngkyun Jung
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon 34141, Korea
| | | | - Albert Johner
- Université de Strasbourg, CNRS, Institut Charles Sadron (ICS), UPR 22, Strasbourg, Cedex 2 67083, France
| |
Collapse
|
18
|
Ghasemi M, Larson RG. Future Directions in Physiochemical Modeling of the Thermodynamics of Polyelectrolyte Coacervates (
PECs
). AIChE J 2022. [DOI: 10.1002/aic.17646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohsen Ghasemi
- Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| | - Ronald G. Larson
- Department of Chemical Engineering University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
19
|
Engkagul V, Rader C, Pon N, Rowan SJ, Weder C. Nanocomposites Assembled via Electrostatic Interactions between Cellulose Nanocrystals and a Cationic Polymer. Biomacromolecules 2021; 22:5087-5096. [PMID: 34734702 DOI: 10.1021/acs.biomac.1c01056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
On account of their high strength and stiffness and their renewable nature, cellulose nanocrystals (CNCs) are widely used as a reinforcing component in polymer nanocomposites. However, CNCs are prone to aggregation and this limits the attainable reinforcement. Here, we show that nanocomposites with a very high CNC content can be prepared by combining the cationic polymer poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) and negatively charged, carboxylated CNCs that are provided as a sodium salt (CNC-COONa). Free-standing films of the composites can be prepared by simple solvent casting from water. The appearance and polarized optical microscopy and electron microscopy images of these films suggest that CNC aggregation is absent, and this is supported by the very pronounced reinforcement observed. The incorporation of 33 wt % CNC-COONa into PMETAC allowed increasing the storage modulus of this already rather stiff, glassy amorphous matrix polymer from 1.5 ± 0.3 to 6.6 ± 0.1 GPa, while the maximum strength increased from 11 to 32 MPa. At this high CNC content, the reinforcement achieved in the PMETAC/CNC-COONa nanocomposite is much more pronounced than that observed for a reference nanocomposite made with unmodified CNCs (CNC-OH).
Collapse
Affiliation(s)
- Visuta Engkagul
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Chris Rader
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nanetta Pon
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
20
|
Durmaz EN, Willott JD, Mizan MMH, de Vos WM. Tuning the charge of polyelectrolyte complex membranes prepared via aqueous phase separation. SOFT MATTER 2021; 17:9420-9427. [PMID: 34609392 PMCID: PMC8549507 DOI: 10.1039/d1sm01199e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/29/2021] [Indexed: 05/19/2023]
Abstract
In this work, polyelectrolyte mixing ratio is studied as a tuning parameter to control the charge, and thus the separation properties of polyelectrolyte complex (PEC) membranes prepared via Aqueous Phase Separation (APS). In this approach, various ratios of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) are mixed at high salinity and the PEC-based membranes are then precipitated using low salinity coagulation baths. The monomeric ratio of PSS to PDADMAC is varied from 1.0 : 0.8 through to 1.0 : 1.2. Obtained membranes have an asymmetric structure and function as nanofiltration membranes with on average 1 L m-2 h-1 bar-1 pure water permeance and <400 Da molecular weight cut-off (MWCO); except for the 1.0 : 1.2 membrane, where the water permeance was much higher (>20 L m-2 h-1 bar-1) with a similarly low MWCO. For the first time, we report the formation of both negatively and positively charged PSS-PDADMAC based APS membranes, as determined by both streaming potential and salt retention measurements. We hypothesize that the salt type used in the APS process plays a key role in the observed change in membrane charge. The point where the membrane charge transitions from negative to positive is found to be between the 1.0 : 0.9 and 1.0 : 1.0 PSS : PDADMAC ratios. The polyelectrolyte ratio not only affects membrane charge, but also their mechanical properties. The 1.0 : 0.9 and 1.0 : 1.0 membranes perform the best amongst the membranes prepared in this study since they have high salt retentions (up to 90% Na2SO4 and 75% MgCl2, respectively) and better mechanical stability. The higher permeance of the more charged, and thus more swollen, 1.0 : 0.8 and 1.0 : 1.2 membranes provide a relevant new direction for the development of APS-based PEC membranes.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Joshua D Willott
- Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Md Mizanul Haque Mizan
- Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Wiebe M de Vos
- Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
21
|
Abbett RL, Chen Y, Schlenoff JB. Self-Exchange of Polyelectrolyte in Multilayers: Diffusion as a Function of Salt Concentration and Temperature. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rachel L. Abbett
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Yuhui Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
22
|
Chen Y, Yang M, Shaheen SA, Schlenoff JB. Influence of Nonstoichiometry on the Viscoelastic Properties of a Polyelectrolyte Complex. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuhui Chen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee 32306, Florida, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee 32306, Florida, United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee 32306, Florida, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee 32306, Florida, United States
| |
Collapse
|
23
|
Lalwani SM, Batys P, Sammalkorpi M, Lutkenhaus JL. Relaxation Times of Solid-like Polyelectrolyte Complexes of Varying pH and Water Content. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suvesh M. Lalwani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16100, FI-00076 Aalto, Finland
| | - Jodie L. Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
24
|
Zhu CN, Zheng SY, Qiu HN, Du C, Du M, Wu ZL, Zheng Q. Plastic-Like Supramolecular Hydrogels with Polyelectrolyte/Surfactant Complexes as Physical Cross-links. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chao Nan Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Si Yu Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Nan Qiu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Cong Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Miao Du
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|