1
|
Pan W, Li Z, Ou F, Zhang Z, Wang C, Xie T, Ning C, Cong R, Gao X, Qin Z, Wei Z, Sun Q, Gao W, Qing Y, Zhao S. High-strength, solvent-resistant carboxymethyl chitosan composite rubber based on dual covalent crosslinking network and hydrogen bond network for multi-functional sensing. Int J Biol Macromol 2025; 309:142437. [PMID: 40185456 DOI: 10.1016/j.ijbiomac.2025.142437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/15/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
In order to prepare natural polymer composite rubber with excellent mechanical properties, solvent resistance and electrical conductivity, and to apply it to multifunctional sensing. In this study, an environmentally friendly and effective strategy was employed to solve these problems. Carboxymethyl chitosan composite rubber was prepared by introducing the dual covalent crosslinking network into carboxy nitrile butadiene rubber via amide and radical reactions, followed by blending with carboxymethyl chitosan to introduce a hydrogen bonding network. The tensile strength of the prepared composite rubber was increased by 45 times, the crosslink density was increased by 405 times, the mechanical properties and solvent resistance were significantly improved, and the electrical conductivity was also obtained. Based on these excellent properties, carboxymethyl chitosan composite rubber can be used in strain sensors to detect human movement, and realize information encryption; it can also be used in humidity sensors to detect human respiration, environmental humidity and industrial pipeline safety. The nature polymer composite rubber prepared in this work will have great potential for application in flexible electronic devices.
Collapse
Affiliation(s)
- Wenyu Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High-Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Zequan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High-Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, Guangxi, China
| | - Fangyan Ou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High-Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Zhichao Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High-Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Changsheng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High-Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Ting Xie
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High-Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Chuang Ning
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High-Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Riyao Cong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Xuehan Gao
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Zengxi Wei
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Qian Sun
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Engineering and Technology Research Center for High-Quality Structural Panels from Biomass Wastes, Nanning 530004, Guangxi, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, Guangxi, China.
| | - Yan Qing
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Shuangliang Zhao
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, Guangxi, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
2
|
Xu Z, Sun D, Xu J, Yang R, Russell JD, Liu G. Progress and Challenges in Polystyrene Recycling and Upcycling. CHEMSUSCHEM 2024; 17:e202400474. [PMID: 38757556 DOI: 10.1002/cssc.202400474] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
Polystyrene is a staple plastic in the packaging and insulation market. Despite its good recyclability, the willingness of PS recycling remains low, largely due to the high recycling cost and limited profitability. This review examines the research progresses, gaps, and challenges in areas that affect the recycling costs, including but not limited to logistics, packaging design, and policymaking. We critically evaluate the recent developments in upcycling strategies, and we particularly focus on tandem and hydrogen-atom transfer (HAT) upcycling strategies. We conclude that future upcycling studies should focus on not only reaction chemistry and mechanisms but also economic viability of the processes. The goal of this review is to stimulate the development of innovative recycling strategies with low recycling costs and high economic output values. We hope to stimulate the economic and technological momentum of PS recycling towards a sustainable and circular economy.
Collapse
Affiliation(s)
- Zhen Xu
- School of Chemistry and Chemical Engineering, Northwest Polytechnology University, Xi'an, 710000, China
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, US
| | - Dongshi Sun
- School of Information and Business Management, Dalian Neusoft University of Information, Dalian, 116023, China
| | - Jianjun Xu
- Institute of Supply Chain Analytics, Dongbei University of Finance and Economics, Dalian, 116025, China
| | - Rong Yang
- School of Chemistry and Chemical Engineering, Northwest Polytechnology University, Xi'an, 710000, China
| | - Jennifer D Russell
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, US
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA-24061, US
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA-24061, US
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA-24061, US
| |
Collapse
|
4
|
Nagane SS, Kuhire SS, Ichake AB, Talanikar AA, Lochab B, Wadgaonkar PP. Synthesis, Characterization and UV‐Crosslinking of Aromatic (Co)polycarbonates Bearing Pendant Azido Groups. ChemistrySelect 2022. [DOI: 10.1002/slct.202201020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Samadhan S. Nagane
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Sachin S. Kuhire
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Amol B. Ichake
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Aniket A. Talanikar
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory Department of Chemistry School of Natural Sciences Shiv Nadar University Gautam Buddha Nagar Greater Noida Uttar Pradesh 201314 India
| | - Prakash P. Wadgaonkar
- Polymers and Advanced Materials Laboratory Polymer Science and Engineering Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|
6
|
Liu T, Huang H, Wang Y, Yu J, Hu Z. Super Strong and Tough Polybenzimidazole/Metal Ions Coordination Networks: Reinforcing Mechanism, Recyclability, and Anti-Counterfeiting Applications. Macromol Rapid Commun 2021; 43:e2100643. [PMID: 34755405 DOI: 10.1002/marc.202100643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Indexed: 11/06/2022]
Abstract
Nature has provided many delicate strategies for optimizing the structural characteristics of biological materials. One such strategy is the strengthening and toughening of matrix materials by aduandant and hierarchically arranged non-covalent crosslinking. However, efficient strengthening and toughening of high-performance aromatic polymers by non-covalent bonds has rarely been reported yet. Herein, we report the preparation and characterizations of a metal coordination bonds crosslinked polybenzimidazole (PBI) network. By optimizing the synthetic parameters, the strength of copper ion (Cu2+ ) crosslinked PBI is improved from 87.8 to 218.4 MPa, and the toughness is increased from 19.4 to 111.9 MJ m-3 , corresponding to increments of 148.7 % and 476.8 %, respectively, which surpass all previously reported non-covalent bonds crosslinked high-performance polymers. PBI with varied chain flexibility are then synthesized to deeply understand the stregnening and toughening mechanism. In addition, the glass transition temperature of PBI is dramatically increased by 75 °C after Cu2+ crosslinking. Moreover, the chemical recycling of PBI from crosslinekd network, and the development of a novel high-temperature resistant or high-temperature rewritable anti-counterfeiting films based on Cu2+ crosslinked PBI are also demonstrated. This study is expected to shed light on design principle for future supramolecularly crosslinked and recyclable high-performance polymers.
Collapse
Affiliation(s)
- Tianmeng Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, P. R. China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of High Performance fibers & products, Ministry of Education, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|