1
|
Huang Y, Zheng X, Ye S, Hua Z, Liu G. Counterion-Mediated Hydrogen Bonding Making Poly(styrenesulfonate)-Based Strong Polyelectrolytes pH-Responsive. J Am Chem Soc 2023; 145:20745-20748. [PMID: 37721441 DOI: 10.1021/jacs.3c05456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Owing to the well-established fact that poly(styrenesulfonate) (PSS)-based strong polyelectrolytes are pH insensitive, their applications in smart materials have thus been severely limited. However, we demonstrate here that counterion-mediated hydrogen bonding (CMHB) makes the PSS brush pH-responsive. With decreasing pH, more hydrogen bonds are formed between the bound hydronium counterions and the sulfonate (-SO3-) groups in the PSS brush. At the microscale, the formation of more hydrogen bonds with decreasing pH leads to a more ordered structure and a larger tilt angle of the -SO3- groups in the PSS brush. On the other hand, a range of important physicochemical properties of the PSS brush, including hydration, stiffness, wettability, and adhesion, are responsive to pH, induced by the effect of CMHB on the PSS brush. Our work reveals a clear structure-property relationship for the pH-responsive PSS brush. This work not only provides a new understanding of the fundamental properties of the PSS brush but also greatly extends the applications of PSS-based strong polyelectrolytes.
Collapse
Affiliation(s)
- Yue Huang
- Hefei National Research Center for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People's Republic of China 230026
| | - Xiaoxuan Zheng
- School of Emerging Technology, University of Science and Technology of China, Hefei, People's Republic of China 230026
| | - Shuji Ye
- Hefei National Research Center for Physical Science at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, People's Republic of China 230026
- Hefei National Laboratory, University of Science and Technology of China, Hefei, People's Republic of China 230088
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, People's Republic of China 214002
| | - Guangming Liu
- Hefei National Research Center for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People's Republic of China 230026
| |
Collapse
|
2
|
Zhang J, Hua Z, Liu G. Effect of Counterion-Mediated Hydrogen Bonding on Polyelectrolytes at the Solid/Water Interface: Current Understanding and Perspectives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2881-2889. [PMID: 36780613 DOI: 10.1021/acs.langmuir.2c03470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The counterion-mediated hydrogen bonding (CMHB) effect can be generated in polyelectrolyte systems when hydrogen bonds are formed between the bound counterions and polyelectrolyte chains. This Perspective mainly discusses the effect of CMHB on polyelectrolytes at the solid/water interface. The CMHB effect generated by the hydroxide (OH-) or hydronium (H3O+) counterions gives rise to a pH responsiveness of strong polyelectrolyte brushes (SPBs) whose strength can be modulated by the external salt concentration. Further studies have shown that the CMHB effect on SPBs can be extended beyond the OH- and H3O+ counterions and that the CMHB effect can be observed in the systems of weak polyelectrolyte brushes (WPBs) and polyelectrolyte multilayers (PEMs). Based on the understanding of the mechanisms of the CMHB effect on polyelectrolytes at the solid/water interface, we have demonstrated that a range of important properties of SPBs, WPBs, and PEMs can be tuned by pH with the consideration of the CMHB effect. Future directions for the CMHB effect on polyelectrolytes are also discussed. The insights on the CMHB effect on polyelectrolytes at the solid/water interface would promote the development of smart interfacial polyelectrolyte materials in a wide range of fields.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Guangming Liu
- Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Phase Behavior of Ion-Containing Polymers in Polar Solvents: Predictions from a Liquid-State Theory with Local Short-Range Interactions. Polymers (Basel) 2022; 14:polym14204421. [PMID: 36297998 PMCID: PMC9612006 DOI: 10.3390/polym14204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.
Collapse
|
4
|
Radhakrishnan K, Singh SP. Explicit characterization of counterion dynamics around a flexible polyelectrolyte. Phys Rev E 2022; 105:044501. [PMID: 35590562 DOI: 10.1103/physreve.105.044501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
The article presents a comprehensive study of counterion dynamics around a generic linear polyelectrolyte chain with the help of coarse-grained computer simulations. The ion-chain coupling is discussed in the form of binding time, mean-square displacement (MSD) relative to the chain, local ion transport coefficient, and spatiotemporal correlations in the effective charge. We have shown that a counterion exhibits subdiffusive behavior 〈δR^{2}〉∼t^{δ}, δ≈0.9 w.r.t. chain's center of mass. The MSD of ions perpendicularly outward from the chain segment exhibits a smaller subdiffusive exponent compared to the one along the chain backbone. The effective diffusivity of ion is the lowest in chain's close proximity, extending up to the length-scale of radius of gyration R_{g}. Beyond R_{g} at larger distances, they attain diffusivity of free ion with a smooth cross-over from the adsorbed regime to the free ion regime. We have shown that the effective diffusivity drastically decreases for the multivalent ions, while the crossover length scale remains the same. Conversely, with increasing salt concentration the coupling-length scale reduces, while the diffusivity remains unaltered. The effective diffusivity of adsorbed-ion reveals an exponential reduction with electrostatic interaction strength. We further corroborate this from the binding time of ions on the chain, which also grows exponentially with the coupling strength of the ion-polymer duo. Moreover, the binding time of ions exhibits a weak dependence with salt concentration for the monovalent salt, while for multivalent salts the binding time decreases dramatically with concentration. Our work also elucidates fluctuations in the effective charge per site, where it exhibits strong negative correlations at short length-scales.
Collapse
Affiliation(s)
- Keerthi Radhakrishnan
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
5
|
Zheng K, Chen K, Ren W, Yang J, Zhao J. Shear-Induced Counterion Release of a Polyelectrolyte. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaikai Zheng
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuo Chen
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Ren
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Yang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhao
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kaur S, Yethiraj A. Chemically realistic coarse-grained models for polyelectrolyte solutions. J Chem Phys 2022; 156:094902. [DOI: 10.1063/5.0080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Supreet Kaur
- University of Wisconsin-Madison, United States of America
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin Madison, United States of America
| |
Collapse
|