1
|
Xu XH, Gao RT, Li SY, Zhou L, Liu N, Wu ZQ. Helical polyisocyanide-based macroporous organic catalysts for asymmetric Michael addition with high efficiency and stereoselectivity. Chem Sci 2024; 15:12480-12487. [PMID: 39118633 PMCID: PMC11304732 DOI: 10.1039/d4sc01316f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
Porous materials have attracted interest due to their high specific surface area and rich functionality. Immobilizing organocatalysts onto porous polymers not only boosts enantioselectivity but also improves the reaction rates. In this work, a series of porous polymers C-poly-3ms with rigid polyisocyanide-carrying secondary amine pendants as building blocks were successfully prepared. And the pore size and optical activity of C-poly-3ms can be controlled by the length of the polyisocyanide blocks due to their rigid and helical backbone. C-poly-3150 demonstrated a preferred left-handed helix with a θ 364 value of -8.21 × 103. The pore size and S BET of C-poly-3150 were 17.52 nm and 7.98 m2 g-1, respectively. The porous C-poly-3150 catalyzes the asymmetric Michael addition reaction efficiently and generates the target products in satisfactory yield and excellent enantioselectivity. For 6ab, an enantiomeric excess (ee) and a diastereomeric ratio (dr) up to 99% and 99/1 could be achieved, respectively. The recovered catalyst can be recycled at least 6 times in the asymmetric Michael addition reaction while maintaining activity and stereoselectivity.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology Hefei 230009 Anhui Province China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology Hefei 230009 Anhui Province China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun Jilin 130021 P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| |
Collapse
|
2
|
Hypercrosslinking Polymers Fabricated from Divinyl Benzene via Friedel-Crafts Addition Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2667-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Zhang ZH, Peng SQ, Chi S, Chen H, Fan L, Liu Y, Ma X, Huang MH. Isolated-alkene-linked porous organic polymers (BIT-POPs): facile synthesis via ROMP and distinguishing overlapping signals in solid-state 13C NMR. Polym Chem 2021. [DOI: 10.1039/d1py01120k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemical structures of novel isolated-alkene-linked porous organic polymers (named BIT-POPs) were investigated through spectral editing techniques based on solid-state NMR.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Shan-Qing Peng
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Shumeng Chi
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Hanyuan Chen
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Lei Fan
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Yan Liu
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Mu-Hua Huang
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|