1
|
Wolf J, Shahrour F, Acar Z, Pellumbi K, Kleinhaus JT, Wickert L, Apfel UP, Siegmund D. Substrate diffusion electrodes allow for the electrochemical hydrogenation of concentrated alkynol substrate feeds. iScience 2025; 28:111789. [PMID: 39925421 PMCID: PMC11803216 DOI: 10.1016/j.isci.2025.111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/29/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Electrosynthesis has the potential to revolutionize industrial organic synthesis sustainably and efficiently. However, high cell voltages and low stability often arise due to solubility issues with organic solvents, while protic electrolytes restrict substrate options. We present a three-layered electrode design that enables the use of concentrated to neat substrate feeds. This design separates the organic substrate from the aqueous electrolyte using layers with varying porosity and hydrophilicity, ensuring precise reactant transport to the catalyst layer while minimizing substrate and electrolyte crossover. We demonstrate its effectiveness by semi-hydrogenating three alkynols with different hydrophobicities. For the semi-hydrogenation of 3-methyl-1-pentyn-3-ol in pure form, we achieved 65% faradaic efficiency at 80 mA cm-2. Additionally, semi-hydrogenation of neat 2-methyl-3-butyn-2-ol on palladium showed a faradaic efficiency for semi-hydrogenation of 36%, that was stable for 22 h. This design could be pioneering the electrochemical valorization of neat substrates, reducing the need for extensive downstream processing.
Collapse
Affiliation(s)
- Jonas Wolf
- Department of Electrocatalysis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
| | - Fatima Shahrour
- Department of Electrocatalysis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
| | - Zafer Acar
- Department of Electrocatalysis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
| | - Kevinjeorjios Pellumbi
- Department of Electrocatalysis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
| | - Julian Tobias Kleinhaus
- Technical Electrochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Leon Wickert
- Technical Electrochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Department of Electrocatalysis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
- Technical Electrochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniel Siegmund
- Department of Electrocatalysis, Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, 46047 Oberhausen, Germany
- Technical Electrochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Kleinhaus JT, Wolf J, Pellumbi K, Wickert L, Viswanathan SC, Junge Puring K, Siegmund D, Apfel UP. Developing electrochemical hydrogenation towards industrial application. Chem Soc Rev 2023; 52:7305-7332. [PMID: 37814786 DOI: 10.1039/d3cs00419h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.
Collapse
Affiliation(s)
- Julian T Kleinhaus
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Jonas Wolf
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kevinjeorjios Pellumbi
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Leon Wickert
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sangita C Viswanathan
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Daniel Siegmund
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
3
|
Sahin B, Kimberly Raymond S, Ntourmas F, Pastusiak R, Wiesner-Fleischer K, Fleischer M, Simon E, Hinrichsen O. Accumulation of Liquid Byproducts in an Electrolyte as a Critical Factor That Compromises Long-Term Functionality of CO 2-to-C 2H 4 Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45844-45854. [PMID: 37729427 DOI: 10.1021/acsami.3c08454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Electrochemical conversion of CO2 using Cu-based gas diffusion electrodes opens the way to green chemical production as an alternative to thermocatalytic processes and a storage solution for intermittent renewable electricity. However, diverse challenges, including short lifetimes, currently inhibit their industrial usage. Among well-studied determinants such as catalyst characteristics and electrode architecture, possible effects of byproduct accumulation in the electrolyte as an operational factor have not been elucidated. This work quantifies the influence of ethanol, n-propanol, and formate accumulation on selectivity, stability, and cell potential in a CO2-to-C2H4 electrolyzer. Alcohols accelerated flooding by degrading the hydrophobic electrode characteristics, undermining selective and stable ethylene formation. Furthermore, high alcohol concentrations triggered the catalyst layer's abrasion and structural disfigurements in the Nafion 117 membrane, leading to high cell potentials. Therefore, continuous removal of alcohols from the electrolyte medium or substantial modifications in the cell components must be considered to ensure long-term performing CO2-to-C2H4 electrolyzers.
Collapse
Affiliation(s)
- Baran Sahin
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
- Catalysis Research Center and Chemistry Department, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b Munich, Germany
| | - Samantha Kimberly Raymond
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
- Catalysis Research Center and Chemistry Department, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b Munich, Germany
| | - Felix Ntourmas
- Technology Department, Siemens AG, Schuckertstr. 2, 91058 Erlangen, Germany
| | - Remigiusz Pastusiak
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
| | | | - Maximilian Fleischer
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
| | - Elfriede Simon
- Innovation Department, Siemens Energy Global GmbH & Co. KG, Otto-Hahn-Ring 6, 81739 Munich, Germany
| | - Olaf Hinrichsen
- Catalysis Research Center and Chemistry Department, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching b Munich, Germany
| |
Collapse
|
4
|
Zhu Z, Paddison SJ. Perspective: Morphology and ion transport in ion-containing polymers from multiscale modeling and simulations. Front Chem 2022; 10:981508. [PMID: 36059884 PMCID: PMC9437359 DOI: 10.3389/fchem.2022.981508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
Ion-containing polymers are soft materials composed of polymeric chains and mobile ions. Over the past several decades they have been the focus of considerable research and development for their use as the electrolyte in energy conversion and storage devices. Recent and significant results obtained from multiscale simulations and modeling for proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs) are reviewed. The interplay of morphology and ion transport is emphasized. We discuss the influences of polymer architecture, tethered ionic groups, rigidity of the backbone, solvents, and additives on both morphology and ion transport in terms of specific interactions. Novel design strategies are highlighted including precisely controlling molecular conformations to design highly ordered morphologies; tuning the solvation structure of hydronium or hydroxide ions in hydrated ion exchange membranes; turning negative ion-ion correlations to positive correlations to improve ionic conductivity in polyILs; and balancing the strength of noncovalent interactions. The design of single-ion conductors, well-defined supramolecular architectures with enhanced one-dimensional ion transport, and the understanding of the hierarchy of the specific interactions continue as challenges but promising goals for future research.
Collapse
Affiliation(s)
| | - Stephen J. Paddison
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
5
|
Kim JM, Lin YH, Aravindhan PP, Beckingham BS. Impact of hydrophobic pendant phenyl groups on transport and co-transport of methanol and acetate in PEGDA-SPMAK cation exchange membranes. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Impact of PEGMA on transport and co-transport of methanol and acetate in PEGDA-AMPS cation exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|