1
|
Zhang X, Guo S, Yu S, Zhang H, Xiang H, Zhu L, Zhou Z, Zhu M. Enhancing mechanical and heat-resistant properties of melt-spun ploy (lactic acid) fiber via crystal structure regulation: The synergistic effects of long-chain branching and drawing process. Int J Biol Macromol 2025; 310:143004. [PMID: 40222532 DOI: 10.1016/j.ijbiomac.2025.143004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
The fabrication of ploy (lactic acid) (PLA) fiber with adjustable crystal structure and property still remains a great challenge. In this work, a series of melt-spun PLA fibers with increased strength and heat-resistance are prepared via crystal structure, which is caused by the synergistic effects of dicumyl peroxide (DCP) long-chain branching (LCB) modification and drawing process. The chemical structure of LCB-PLA resin is confirmed by the NMR and FTIR spectrum, which indicates that PLA is successfully modified by DCP free radical reaction through reactive extrusion. Moreover, the crystallization behavior and rheological property of PLA resin are significantly influenced by LCB degree. Especially, the PLA-LCB with 0.05 % DCP demonstrates the most ideal crystallinity and thermal stability owing to the micro crosslinking effect of DCP. Finally, the synergistic effects of LCB modification and drawing process on the crystal structure and property of PLA fiber are investigated by WAXD, SAXS, DMA and tensile testing. The tensile strength and glass transition temperature of LCB-PLA-0.05D fiber with 2.4 drawing ratio are increased to 3.25cN/dtex and 76.5 °C, respectively. Therefore, our work presents a feasible approach to fabricate enhanced strength and heat-resistance PLA fiber via crystal structure regulation, which has a bright future of industrialization.
Collapse
Affiliation(s)
- Xiugang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Sheng Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Huanyao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhe Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Zhang Z, Cui S, Ma R, Ye Q, Sun J, Wang Y, Liu C, Wang Z. Melt stretching and quenching produce low-crystalline biodegradable poly(lactic acid) filled with β-form shish for highly improved mechanical toughness. Int J Biol Macromol 2023; 251:126220. [PMID: 37572805 DOI: 10.1016/j.ijbiomac.2023.126220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
High-toughness biodegradable poly(lactic acid) (PLA) has always been intensively pursued on the way of replacing traditional petroleum-based plastics. Regulating microstructures to achieve self-toughening holds great promise due to avoidance of incorporating other heterogeneous components. Herein, we propose a straightforward and effective way to tailor microstructures and properties of PLA through melt-stretching and quenching of slightly crosslinked samples. The melt stretching drives chains orientation and crystallization at high temperature, while the quenching followed can freeze the crystallization process to any stage. For the first time, we prepare a type of transparent and low-crystalline PLA filled with rod-like β-form shish, which displays an outstanding tensile toughness, almost 17 times that of the conventional technique-processed one. This mechanical superiority is enabled by an integration of high ductility due to oriented chain network, and high tensile stress endowed by nanofibrous filler's role of β-form shish. Furthermore, the mechanically toughened PLA is demonstrated to generate the richest micro-cracks and shear bands under loading, which can effectively dissipate the deformational energy and underlie the high toughness. This work opens a new prospect for the bottom-up design of high-performance bio-based PLA materials that are tough, ductile and transparent by precise microstructural regulation through scalable melt processing route.
Collapse
Affiliation(s)
- Zhen Zhang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Shanlin Cui
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Ruixue Ma
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Qiuyang Ye
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Jiahui Sun
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Yaming Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China.
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Zhen Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
3
|
Cai Y, Liu S, Fang C, Liu Z, He Y, Qu JP. Strengthening-toughening pure poly(lactic acid) with ultra-transparency through increasing mesophase promoted by elongational flow field. Int J Biol Macromol 2023:125091. [PMID: 37247709 DOI: 10.1016/j.ijbiomac.2023.125091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Poly(lactic acid) (PLA), as a biodegradable material, finds wide applications in packaging, automotive, and biological industries. However, achieving high strength, toughness, ultra-transparency, and heat resistance simultaneously in pure PLA through continuous one-step manufacturing remains a significant challenge. In this study, we addressed this challenge by utilizing the eccentric rotor extruder (ERE) in combination with cooling rolls to manufacture PLA sheets with outstanding mechanical performance. The ERE's elongational flow field combined with the cooling roller's weak stretching action induced orientation in the PLA molecular chains and promoted the formation of more mesophase, significantly improving mechanical properties. When the extrusion-stretch ratio (λ) value was 3.5, the tensile yield strength, Young's modulus, and elongation at break of ERE-fabricated samples ER-3.5 reached 86.2 MPa, 1777 MPa, and 57.9 %, respectively. Compared to the SE-3.5 samples manufactured with traditional methods, the increases were 38.8 %, 25.8 %, and 9.4 times, respectively. Additionally, the ERE manufactured samples maintained ultra-transparency and high heat resistance, making them suitable for food packaging, biomedicine, and other related fields. This methodology provides an efficient industrial-scale approach for manufacturing neat, biodegradable PLA with outstanding mechanical performance and ultra-transparency.
Collapse
Affiliation(s)
- Yu Cai
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shuai Liu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Cong Fang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhihua Liu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yue He
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
4
|
Lin H, Chen Y, Gao XR, Xu L, Lei J, Zhong GJ, Li ZM. Transparent, Heat-Resistant, Ductile, and Self-Reinforced Polylactide through Simultaneous Formation of Nanocrystals and an Oriented Amorphous Phase. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xin-Rui Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ling Xu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Niu D, Li J, Xu P, Liu T, Yang W, Wang Z, Ma P. High-performance and durable fibrous poly(glycolic acid)/poly(butylene adipate-co-terephthalate) blends by reactive compatibilization and solid-state drawing. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
6
|
Niu D, Xu P, Li J, Yang W, Liu T, Ma P. Strong, ductile and durable Poly(glycolic acid)-based films by constructing crystalline orientation, entanglement network and rigid amorphous fraction. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yuan QW, Zhang YP, Qin S, Qu JP. Regulating Mesophase via Melt Volume Pulsation on an Industrial Scale for Self-Toughening and Self-Reinforcing of Polyethylene Terephthalate. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qing-Wen Yuan
- National Engineering Research Center of Novel Equipment for Polymer Processing, Guangzhou 510640, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou 510640, China
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying-Pei Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Guangzhou 510640, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou 510640, China
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Sen Qin
- National Engineering Research Center of Novel Equipment for Polymer Processing, Guangzhou 510640, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou 510640, China
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Guangzhou 510640, China
- Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou 510640, China
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Chen X, Yao J, Yu J, Mi M, Xu Y, Bai H. Toward Heat-Resistant and Transparent Poly( l-lactide) by Tailoring Crystallization with an Aliphatic Amide as a Nucleating Agent. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaonan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ju Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingmei Mi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| | - Hongwei Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
9
|
Wei X, Qu Y, Jiang H, Huang ZX, Qu JP. Melt-state dynamic pressure engineered Polybutene-1 with form I crystals. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Yu M, Du Y, Xu P, Yang W, Zhang P, Liu T, Lemstra PJ, Ma P. Nucleation and crystallization of poly(L-lactide) assisted by terminal hydrogen-bonding segments. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wu F, Tian GQ, Yang JW, Tan J. Simultaneously improving the toughness and flame retardancy of Poly(lactic acid) by incorporating a novel bifunctional macromolecular ionomer. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Yu M, Xu Y, Xu P, Du Y, Yang W, Zhang P, Ma P. Tailoring the crystallization of poly( l-lactide) via structural optimization of hydrogen-bonding segments with different aliphatic spacer lengths. Polym Chem 2022. [DOI: 10.1039/d2py01071b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of hydroxy-terminated oxalamide segments (OXA-n, HO-(CH2)n-NHCOCONH-(CH2)n-OH, n = 2, 4 and 6) were designed as initiators for ring-opening polymerization and then poly(l-lactide) with OXA-n in the middle (PLLAOXA-n) were synthesized.
Collapse
Affiliation(s)
- Manman Yu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yunsheng Xu
- Zhejiang Sci-Tech University, Sch Mat Sci & Engn, Hangzhou 310018, People's Republic of China
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Youpei Du
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Pingxia Zhang
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
13
|
Huang Y, Jin Y, Wang B, Tian H, Weng Y, Sun K, Men S. Preparation and characterization of compatibilized and toughened polylactic acid/cellulose acetate films by long‐chain hyperbranched polymers. J Appl Polym Sci 2021. [DOI: 10.1002/app.52097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yansong Huang
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Yujuan Jin
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Bo Wang
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Huafeng Tian
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Yunxuan Weng
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Kangdi Sun
- College of chemistry and materials Engineering Beijing Technology and Business University Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| | - Shuang Men
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing Technology and Business University Beijing China
| |
Collapse
|
14
|
Niu D, Xu P, Sun Z, Yang W, Dong W, Ji Y, Liu T, Du M, Lemstra PJ, Ma P. Superior toughened bio-compostable Poly(glycolic acid)-based blends with enhanced melt strength via selective interfacial localization of in-situ grafted copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|