1
|
Saha D, Witt CL, Fatima R, Uchiyama T, Pande V, Song DP, Fei HF, Yavitt BM, Watkins JJ. Opportunities in Bottlebrush Block Copolymers for Advanced Materials. ACS NANO 2025; 19:1884-1910. [PMID: 39834289 DOI: 10.1021/acsnano.4c12021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Bottlebrush block copolymers (BBCPs) are a unique class of materials that contain a backbone with densely grafted and chemically distinct polymeric side chains. The nonlinear architecture of BBCPs provides numerous degrees of freedom in their preparation, including control over key parameters such as grafting density, side chain length, block arrangement, and overall molecular weight. This uniquely branched structure provides BBCPs with several important distinctions from their linear counterparts, including sterically induced side chain and backbone conformations, rapid and large self-assembled nanostructures, and reduced or eliminated entanglement effects (assuming sufficient grafting density and that the molecular weight of the side chains is below their respective entanglement molecular weight). These distinctions allow access to large domain sizes, very rapid assembly, and the ability to preferentially add additives and/or precursors to one domain, thereby enabling the efficient fabrication of a wide range of advanced materials and devices. BBCPs have been utilized to create finely controlled and well-ordered nanostructures for use in applications, such as photonic crystals, drug delivery systems, energy conversion, energy storage devices, and key components in surface coatings. To further deploy BBCPs as templates for the formation of precise nanostructures, having a thorough understanding of their synthesis, self-assembly, and templating is necessary. To explore and understand the self-assembly and subsequent applications of BBCPs, this review emphasizes the physics of self-assembly for BBCPs (including architectural, rheological, and thermodynamic considerations) and structure-property relationships between BBCPs and their resulting nanostructures. Lastly, we provide an overview of current research trends using BBCPs in energy storage, energy conversion, photonic, 3D printing, and drug delivery applications. We aim to provide researchers with the fundamentals of BBCP self-assembly in their use as nanostructured materials to continue their development of advanced materials.
Collapse
Affiliation(s)
- Dipankar Saha
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L Witt
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Rida Fatima
- School of Materials Science and Engineering, Tianjin University (Beiyang Campus), Tianjin 300350, China
| | - Takumi Uchiyama
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Varun Pande
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Dong-Po Song
- School of Materials Science and Engineering, Tianjin University (Beiyang Campus), Tianjin 300350, China
| | - Hua-Feng Fei
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benjamin M Yavitt
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - James J Watkins
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Zhang L, Yang Z, Xia W, Li J, Yang H, Yang S, Chen EQ. Liquid Crystal Promoted Self-Assembly of Statistical Copolymers into Diverse Nanostructures with Precise Dimensions. J Am Chem Soc 2024; 146:31221-31229. [PMID: 39487966 DOI: 10.1021/jacs.4c11649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
In both natural and synthetic systems, the segregation of multicomponent entities is vital for regulating functions and the ultimate usage of materials. To accomplish the desired properties via nanosegregation or microphase separation, great effort is usually demanded in the synthesis. For example, microphase-separated block copolymers rely on the delicate controlled/living polymerization of different monomers in sequence. Here, we demonstrate that a facile one-pot copolymerization can generate statistical side-chain copolymers exhibiting well-defined and diverse nanostructures. Two hemiphasmidic (or wedge-shaped) cyclooctene monomers were designed, differing in the peripheral tails of the wedges (dodecyl vs. tetraethylene glycol), with lengths of ca. 1 nm. When combining the two monomers together, the statistical copolymers can show columnar liquid crystal (LC) phase and microphase-separated structures of the two monomers, including sphere, cylinder, double gyroid, and lamella. To the best of our knowledge, this is the first time the gyroid phase has been achieved in statistical copolymers. We further demonstrate that changing the side chains to calamitic (or rod-like) mesogens or the backbone to less flexible polynorbornene, the statistical copolymers can also undergo microphase separation of the side chains. The intrinsic self-assembly scheme of statistical copolymers with mesogenic side chains, which are chemically accurate, affords the resultant nanostructures with precise periodicities at the 10- or sub-10-nm scale. Given the small chemical difference between the side-chain tails, microphase separation is promoted by the anisotropic packing of mesogens. It is validated that the statistical side-chain LC copolymers can be a versatile platform for creating nanostructured materials with tailored functionalities.
Collapse
Affiliation(s)
- Longlong Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Zifan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Wei Xia
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Jiahua Li
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
3
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 PMCID: PMC11634236 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R. Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L. Witt
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J. Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J. Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Guan J, Zhang C, Xu P, Niu D, Yang W, Zhang X, Liu T, Ma P. Biodegradable reactive compatibilizers for efficient in-situ compatibilization of poly (lactic acid)/poly (butylene adipate-terephthalate) blends. Int J Biol Macromol 2024; 262:130029. [PMID: 38340935 DOI: 10.1016/j.ijbiomac.2024.130029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The wide application of fully biodegradable polylactic acid/polybutylene terephthalate (PLA/PBAT) blends in environmentally friendly packaging were limited because of poor compatibility. Normal compatibilizers suffer from poor thermal stability and non-biodegradability. In this work, epoxy copolymer (MDOG) with different molecular structures were made of 2-methylene-1, 3-dioxoheptane, and glycidyl methacrylate as raw materials by free radical copolymerization. MDOG copolymers have good biodegradability and a high thermal decomposition temperature of 361 °C. The chemical reaction of the epoxy groups in MDOG with PLA and PBAT during the melting reaction improved the interfacial bonding by decreasing the particle size of PBAT. Compared to the PLA/PBAT blends, the tensile strength and fracture toughness of PLA/PBAT/MDOG blends were enhanced to 34.6 MPa and 115.8 MJ/m3, which are 25 % and 81 % higher, respectively. As a result, this work offers new methods for developing thermally stable and biodegradable compatibilizers, which will hopefully promote the development of packaging industry.
Collapse
Affiliation(s)
- Jieyu Guan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ce Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xu Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
5
|
Asadi V, Dolleman R, van der Gucht J, Kodger TE. 3D printable soft and solvent-free thermoplastic elastomer containing dangling bottlebrush chains. MATERIALS ADVANCES 2023; 4:5535-5545. [PMID: 38013845 PMCID: PMC10642180 DOI: 10.1039/d3ma00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/27/2023] [Indexed: 11/29/2023]
Abstract
Polymer networks containing bottlebrush chains are emerging materials with exceptionally soft and highly tunable mechanical properties. However, such materials have not been extensively implemented in functional processing techniques such as three-dimensional (3D) printing. Here, we introduce a new design of soft and solvent-free polydimethylsiloxane (PDMS)-based thermoplastic elastomer which contains dangling and space-filling bottlebrush chains, featuring a yield stress and a rapid recovery after stress removal; both required for high spatial fidelity 3D printing. The developed material is composed of two copolymers; the main building block is a diblock copolymer with linear polystyrene (PS) block and bottlebrush PDMS block (PS-b-bbPDMS) while the second component is PS-b-PDMS-b-PS triblock, self-assembling to a physical network. This design provides independent tunability of each structural parameter on the molecular level, hence, macroscopic control of the materials' mechanical properties. Multiple self-supportive 3D structures with spanning elements are 3D printed at elevated temperatures using a developed material with a low shear modulus of G' = 3.3 kPa containing 3 : 1 molar ratio of diblock to triblock copolymers without the need for volatile solvent, or post-treatment. This 3D printing compatible design opens new opportunities to utilize the distinctive mechanical properties of bottlebrush materials for applications such as soft tissue scaffolds, sensors, actuators, and soft robots.
Collapse
Affiliation(s)
- Vahid Asadi
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Renee Dolleman
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Thomas E Kodger
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
6
|
Kim KH, Nam J, Choi J, Seo M, Bang J. From macromonomers to bottlebrush copolymers with sequence control: synthesis, properties, and applications. Polym Chem 2022. [DOI: 10.1039/d2py00126h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bottlebrush polymers (BBPs) are a type of comb-like macromolecules with densely grafted polymeric sidechains attached to the polymer backbones, and many intriguing properties and applications have been demonstrated due to...
Collapse
|