1
|
Prato M, Dosso J. N-Monoarylated dihydrophenazines in reduced and oxidized states as efficient organo-photocatalysts. Chem Commun (Camb) 2025; 61:2584-2587. [PMID: 39820220 DOI: 10.1039/d4cc06499b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In this work, the synthesis of an N-monoarylated dihydrophenazine is reported together with its interconversion to its oxidized mono-cationic form. While the reduced state was employed for the dechlorination of aromatic substrates, the oxidized mono-cationic one was exploited for the formation of C-N bonds between aryl rings and azoles, which was achieved with high yields and very low catalyst loadings (down to 0.5 mol%).
Collapse
Affiliation(s)
- Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain
| | - Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| |
Collapse
|
2
|
Mukhopadhyay N, Sengupta A, Lloret F, Mukherjee R. Phenoxazinyl Zn(II) diradical complex formed via redox-driven cyclization of a 2-aminophenol-based N 3O ligand. Isolation of the modified N 3 ligand radical and its Ni(II) complex. Dalton Trans 2024; 53:6515-6519. [PMID: 38563205 DOI: 10.1039/d4dt00374h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aerobic reaction between the pyridine-2-carboxamide-2-aminophenol N3O ligand (H3L1) and Zn(ClO4)2·6H2O in CH3CN affords an N3 phenoxazinylate coordinated Zn(II) complex; its diradical electronic structure [ZnII{(L1*)˙-}2] has been elucidated from redox, spectroscopic (UV-VIS and EPR), and magnetic measurements and DFT calculations. Isolation and characterization of the metal-assisted redox-driven modified N3 ligand as a radical cation (H2L1*)˙+ and its Ni(II)-diradical complex [NiII{(L1*)˙-}2] have also been achieved.
Collapse
Affiliation(s)
- Narottam Mukhopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Arunava Sengupta
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Francesc Lloret
- Department de Química Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València, Polígono de la Coma, s/n, 46980 Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
3
|
Sadhu C, Mitra AK. Synthetic, biological and optoelectronic properties of phenoxazine and its derivatives: a state of the art review. Mol Divers 2024; 28:965-1007. [PMID: 36757655 PMCID: PMC9909160 DOI: 10.1007/s11030-023-10619-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Phenoxazines have sparked a lot of interest owing to their numerous applications in material science, organic light-emitting diodes, photoredox catalyst, dye-sensitized solar cells and chemotherapy. Among other things, they have antioxidant, antidiabetic, antimalarial, anti-alzheimer, antiviral, anti-inflammatory and antibiotic properties. Actinomycin D, which contains a phenoxazine moiety, functions both as an antibiotic and anticancer agent. Several research groups have worked on various structural modifications over the years in order to develop new phenoxazines with improved properties. Both phenothiazines and phenoxazines have gained prominence in medicine as pharmacological lead structures from their traditional uses as dyes and pigments. Organoelectronics and material sciences have recently found these compounds and their derivatives to be quite useful. Due to this, organic synthesis has been used in an unprecedented amount of exploratory alteration of the parent structures in an effort to create novel derivatives with enhanced biological and material capabilities. As a result, it is critical to conduct more frequent reviews of the work done in this area. Various stages of the synthetic transformation of phenoxazine scaffolds have been depicted in this article. This article aims to provide a state of the art review for the better understanding of the phenoxazine derivatives highlighting the progress and prospects of the same in medicinal and material applications.
Collapse
Affiliation(s)
- Chandrita Sadhu
- Department of Chemistry, Rani Rashmoni Green University, Tarakeswar, Hooghly, West Bengal, India
| | - Amrit Krishna Mitra
- Department of Chemistry, Government General Degree College, Singur, Singur, Hooghly, West Bengal, 712409, India.
| |
Collapse
|
4
|
Wang Z, Wu C, Liu W. Toward the Rational Design of Organic Catalysts for Organocatalysed Atom Transfer Radical Polymerisation. Polymers (Basel) 2024; 16:323. [PMID: 38337212 DOI: 10.3390/polym16030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Thanks to their diversity, organic photocatalysts (PCs) have been widely used in manufacturing polymeric products with well-defined molecular weights, block sequences, and architectures. Still, however, more universal property-performance relationships are needed to enable the rational design of such PCs. That is, a set of unique descriptors ought to be identified to represent key properties of the PCs relevant for polymerisation. Previously, the redox potentials of excited PCs (PC*) were used as a good descriptor for characterising very structurally similar PCs. However, it fails to elucidate PCs with diverse chromophore cores and ligands, among which those used for polymerisation are a good representative. As showcased by model systems of organocatalysed atom transfer radical polymerisation (O-ATRP), new universal descriptors accounting for additional factors, such as the binding and density overlap between the PC* and initiator, are proposed and proved to be successful in elucidating the experimental performances of PCs in polymerisation. While O-ATRP is exemplified here, the approach adopted is general for studying other photocatalytic systems.
Collapse
Affiliation(s)
- Zhilei Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Chenyu Wu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Wenjian Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Gentile G, Bartolomei B, Dosso J, Demitri N, Filippini G, Prato M. Synthesis of a novel tetra-phenol π-extended phenazine and its application as an organo-photocatalyst. Chem Commun (Camb) 2024; 60:602-605. [PMID: 38099872 DOI: 10.1039/d3cc05176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this paper, the synthesis of a novel tetra-phenol π-extended dihydrophenazine is reported. The obtained derivative presents marked reducing properties in the excited state and was exploited as an organo-photocatalyst in dehalogenation and C-C bond formation reactions. These results underline the great potential of functionalized π-extended dihydrophenazines as organo-photocatalysts.
Collapse
Affiliation(s)
- Giuseppe Gentile
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Nicola Demitri
- Elettra-Sincrotrone, Trieste S.S. 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Puffer KO, Corbin DA, Miyake GM. Impact of Alkyl Core Substitution Kinetics in Diaryl Dihydrophenazine Photoredox Catalysts on Properties and Performance in O-ATRP. ACS Catal 2023; 13:14042-14051. [PMID: 38883439 PMCID: PMC11178316 DOI: 10.1021/acscatal.3c04060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization method mediated by organic photoredox catalysts (PCs) for producing polymers with well-defined structures. While N,N-diaryl dihydrophenazine PCs have successfully produced polymers with low dispersity (Đ < 1.3) in O-ATRP, low initiator efficiencies (I* ~ 60-80%) indicate an inability to achieve targeted molecular weights and have been attributed to the addition of radicals to the PC core. In this work, we measure the rates of alkyl core substitution (AkCS) to gain insight into why PCs differing in N-aryl group connectivity exhibit differences in polymerization control. Additionally, we evaluate how PC properties evolve during O-ATRP when a non-core-substituted PC is used. PC 1 with 1-naphthyl groups in the N-aryl position resulted in faster AkCS (k 1 = 1.21 ± 0.16 × 10-3 s-1, k 2 = 2.04 ± 0.11 × 10-3 s-1) and better polymerization control at early reaction times as indicated by plots of molecular weight (number average molecular weight = M n) vs conversion compared to PC 2 with 2-naphthyl groups (k 1 = 6.28 ± 0.38 × 10-4 s-1, k 2 = 1.15 ± 0.07 × 10-3 s-1). The differences in rates indicate that N-aryl connectivity can influence polymerization control by changing the rate of AkCS PC formation. The rate of AkCS increased from the initial to the second substitution, suggesting that PC properties are modified by AkCS. Increased PC radical cation (PC•+) oxidation potentials (E 1/2 = 0.26-0.27 V vs SCE) or longer triplet excited-state lifetimes (τ T1 = 1.4-33 μs) for AkCS PCs 1b and 2b compared to parent PCs 1 and 2 (E 1/2 = 0.21-0.22 V vs SCE, τ T1 = 0.61-3.3 μs) were observed and may explain changes to PC performance with AkCS. Insight from evaluation of the formation, properties, and performance of AkCS PCs will facilitate their use in O-ATRP and in other PC-driven organic transformations.
Collapse
Affiliation(s)
- Katherine O Puffer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Daniel A Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Žurauskas J, Boháčová S, Wu S, Butera V, Schmid S, Domański M, Slanina T, Barham JP. Electron-Poor Acridones and Acridiniums as Super Photooxidants in Molecular Photoelectrochemistry by Unusual Mechanisms. Angew Chem Int Ed Engl 2023; 62:e202307550. [PMID: 37584300 DOI: 10.1002/anie.202307550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Electron-deficient acridones and in situ generated acridinium salts are reported as potent, closed-shell photooxidants that undergo surprising mechanisms. When bridging acyclic triarylamine catalysts with a carbonyl group (acridones), this completely diverts their behavior away from open-shell, radical cationic, 'beyond diffusion' photocatalysis to closed-shell, neutral, diffusion-controlled photocatalysis. Brønsted acid activation of acridones dramatically increases excited state oxidation power (by +0.8 V). Upon reduction of protonated acridones, they transform to electron-deficient acridinium salts as even more potent photooxidants (*E1/2 =+2.56-3.05 V vs SCE). These oxidize even electron-deficient arenes where conventional acridinium salt photooxidants have thusfar been limited to electron-rich arenes. Surprisingly, upon photoexcitation these electron-deficient acridinium salts appear to undergo two electron reductive quenching to form acridinide anions, spectroscopically-detected as their protonated forms. This new behaviour is partly enabled by a catalyst preassembly with the arene, and contrasts to conventional SET reductive quenching of acridinium salts. Critically, this study illustrates how redox active chromophoric molecules initially considered photocatalysts can transform during the reaction to catalytically active species with completely different redox and spectroscopic properties.
Collapse
Affiliation(s)
- Jonas Žurauskas
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Shangze Wu
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Valeria Butera
- Central European Institute of Technology, CEITEC, 61200 Brno (Czech Republic), Department of Science and Biological Chemical and Pharmaceutical Technologies, University of Palermo, 90128, Palermo, Italy
| | - Simon Schmid
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Michał Domański
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Joshua P Barham
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
8
|
Ahmed M, Wu Y, Schiavone MR, Lang K, You L, Zeller M, Mei J. Synthesis and Reduction of Nitrogen-Substituted Diaryl Dihydrophenazine Diradical Dications. Org Lett 2023; 25:6363-6367. [PMID: 37607053 DOI: 10.1021/acs.orglett.3c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A one-pot synthetic approach to form core-extended N,N'-disubstituted diaryl dihydrophenazine (DADHP) diradical dications (DRDCs) via chemical oxidation from aryl-substituted ortho-phenyldiamines is reported. The isolated N,N'-disubstituted DADHP DRDCs were reduced to their neutral counterparts with hydrazine. The model system featuring an unsubstituted fluorene aryl group, 2a, was tested as a photocatalyst for the polymerization of methyl methacrylate using organocatalyzed atom transfer polymerization (O-ATRP), which yielded a polymer with a controlled molecular weight and narrow polydispersity.
Collapse
Affiliation(s)
- Mustafa Ahmed
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yukun Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew R Schiavone
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kai Lang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Dosso J, Prato M. N,N-Diphenyl Dihydrophenazines: Using π-Extension to Access Dicationic Multifunctional Materials. Chemistry 2023; 29:e202203637. [PMID: 36519970 DOI: 10.1002/chem.202203637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Dihydrophenazines are receiving increasing attention due to applications in numerous fields of chemistry, from light emission to organo-photocatalysis. Despite this growing interest and numerous works involving the preparation of radical cations based on this scaffold, the isolation and study of the aromatic dications obtained by 2 electron oxidation of dihydrophenazines is still mostly unexplored. From this point of view, along with the substitution at the N atoms generally used to tune dihydrophenazine properties, the π-extension of the phenazine core could play a crucial role in making dicationic states accessible. This could result in an extension of the knowledge on these elusive dications and in potentially highly interesting applications ranging from material science to molecular actuators.
Collapse
Affiliation(s)
- Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain.,Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain
| |
Collapse
|
10
|
Chism KA, Corbin DA, Miyake GM. Removal of photoredox catalysts from polymers synthesized by organocatalyzed atom transfer radical polymerization. JOURNAL OF POLYMER SCIENCE 2022; 60:2747-2755. [PMID: 36591408 PMCID: PMC9796344 DOI: 10.1002/pol.20220320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 01/04/2023]
Abstract
Organocatalyzed atom transfer radical polymerization (O-ATRP) is a method of producing polymers with precise structures under mild conditions using organic photoredox catalysts (PCs). Due to the unknown toxicity of PCs and their propensity to introduce color in polymers synthesized by this method, removal of the PC from the polymer product can be important for certain applications of polymers produced using O-ATRP. Current purification methods largely rely on precipitation to remove the PC from the polymer, but a more effective and efficient purification method is needed. In this work, an alternative purification method relying on oxidation of the PC to PC · + followed by filtration through a plug to remove PC · + from the polymer and removal of the volatiles was developed. A range of chemical oxidants and stationary phases were tested for their ability to remove PCs from polymers, revealing chemical oxidation by N-bromosuccinimide followed by a filtration through a silica plug can remove up to 99% of the PC from poly(methyl methacrylate). Characterization of the polymer before and after purification demonstrated that polymer molecular weight, dispersity, and chain-end fidelity are not signficantly impacted by this purification method. Finally, this purification method was tested on a range of dihydrophenazine, phenoxazine, dihydroacridines, and phenothiazine PCs, revealing the strength of the chemical oxidant must match the oxidation potential of the PC for effective purification.
Collapse
Affiliation(s)
| | - Daniel A. Corbin
- Department of ChemistryColorado State UniversityFort CollinsColoradoUSA
| | - Garret M. Miyake
- Department of ChemistryColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
11
|
Lorandi F, Fantin M, Matyjaszewski K. Atom Transfer Radical Polymerization: A Mechanistic Perspective. J Am Chem Soc 2022; 144:15413-15430. [PMID: 35882005 DOI: 10.1021/jacs.2c05364] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its inception, atom transfer radical polymerization (ATRP) has seen continuous evolution in terms of the design of the catalyst and reaction conditions; today, it is one of the most useful techniques to prepare well-defined polymers as well as one of the most notable examples of catalysis in polymer chemistry. This Perspective highlights fundamental advances in the design of ATRP reactions and catalysts, focusing on the crucial role that mechanistic studies play in understanding, rationalizing, and predicting polymerization outcomes. A critical summary of traditional ATRP systems is provided first; we then focus on the most recent developments to improve catalyst selectivity, control polymerizations via external stimuli, and employ new photochemical or dual catalytic systems with an outlook to future research directions and open challenges.
Collapse
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Grishin ID. New Approaches to Atom Transfer Radical Polymerization and Their Realization in the Synthesis of Functional Polymers and Hybrid Macromolecular Structures. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Dosso J, Bartolomei B, Demitri N, Cossío FP, Prato M. Phenanthrene-Extended Phenazine Dication: An Electrochromic Conformational Switch Presenting Dual Reactivity. J Am Chem Soc 2022; 144:7295-7301. [PMID: 35412820 PMCID: PMC9052754 DOI: 10.1021/jacs.2c00493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The synthesis and
isolation of one of the few examples of a π-extended
diamagnetic phenazine dication have been achieved by oxidizing a phenanthrene-based
dihydrophenazine precursor. The resulting dication was isolated and
fully characterized, highlighting an aromatic distorted structure,
generated by the conformational change upon the oxidation of the dihydrophenazine
precursor, which is also correlated with a marked electrochromic change
in the UV–vis spectrum. The aromaticity of the dication has
also been investigated theoretically, proving that the species is
aromatic based on all major criteria (structural, magnetic, and energetic).
Moreover, the material presents an intriguing dual reactivity, resulting
in ring contraction to a π-extended triarylimidazolinium and
reduction to the dihydrophenazine precursor, depending on the nature
of the nucleophile involved. This result helps shed light on the yet
largely unexplored reactivity and properties of extended dicationic
polycyclic aromatic hydrocarbons (PAHs). In particular, the fact that
the molecule can undergo a reversible change in conformation upon
oxidation and reduction opens potential applications for this class
of derivatives as molecular switches and actuators.
Collapse
Affiliation(s)
- Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Nicola Demitri
- Elettra─Sincrotrone, Trieste S.S., 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Fernando P Cossío
- Departamento de Química Orgánica I, Instituto de Innovaciónen Química Avanzada (ORFEO-CINQA), University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia/San Sebastián, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel Lardizabal 4, 20018 Donostia/San Sebastián, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.,Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia San Sebastián, Spain.,Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Corbin DA, Miyake GM. Photoinduced Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP): Precision Polymer Synthesis Using Organic Photoredox Catalysis. Chem Rev 2022; 122:1830-1874. [PMID: 34842426 PMCID: PMC9815475 DOI: 10.1021/acs.chemrev.1c00603] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) has received considerable attention since its introduction in 2014. Expanding on many of the advantages of traditional ATRP, O-ATRP allows well-defined polymers to be produced under mild reaction conditions using organic photoredox catalysts. As a result, O-ATRP has opened access to a range of sensitive applications where the use of a metal catalyst could be of concern, such as electronics, certain biological applications, and the polymerization of coordinating monomers. However, key limitations of this method remain and necessitate further investigation to continue the development of this field. As such, this review details the achievements made to-date as well as future research directions that will continue to expand the capabilities and application landscape of O-ATRP.
Collapse
|
16
|
Dey D, Kundu A, Roy M, Pal S, Adhikari D. Aromatization as the driving force for single electron transfer towards C–C cross-coupling reactions. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a strong current interest in C–H functionalization reactions under metal-free conditions. We report herein that the deprotonated form of dihydrophenazine (DPh) as a potent initiator under photochemical conditions...
Collapse
|
17
|
Soly S, Mistry B, Murthy CN. Photo‐mediated metal‐free atom transfer radical polymerization: recent advances in organocatalysts and perfection towards polymer synthesis. POLYM INT 2021. [DOI: 10.1002/pi.6336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sneha Soly
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| | - Bhavita Mistry
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| | - CN Murthy
- Macromolecular Materials Laboratory, Applied Chemistry Department, Faculty of Technology and Engineering The Maharaja Sayajirao University of Baroda Vadodara 390001 India
| |
Collapse
|
18
|
Price MJ, Puffer KO, Kudisch M, Knies D, Miyake GM. Structure–property relationships of core-substituted diaryl dihydrophenazine organic photoredox catalysts and their application in O-ATRP. Polym Chem 2021. [DOI: 10.1039/d1py01060c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced organocatalyzed atom-transfer radical polymerization (O-ATRP) is a controlled radical polymerization technique that can be driven using low-energy, visible light and makes use of organic photocatalysts.
Collapse
Affiliation(s)
- Mariel J. Price
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Katherine O. Puffer
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Max Kudisch
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Declan Knies
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Garret M. Miyake
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| |
Collapse
|