1
|
Sokołowska M, Nowak-Grzebyta J, Stachowska E, Miądlicki P, Zdanowicz M, Michalkiewicz B, El Fray M. Enzymatically catalyzed furan-based copolyesters containing dilinoleic diol as a building block. RSC Adv 2023; 13:22234-22249. [PMID: 37492515 PMCID: PMC10363961 DOI: 10.1039/d3ra03885h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
A more environmentally friendly method for creating sustainable alternatives to traditional aromatic-aliphatic polyesters is a valuable step towards resource-efficiency optimization. A library of furan-based block copolymers was synthesized via temperature-varied two-step polycondensation reaction in diphenyl ether using Candida antarctica lipase B (CAL-B) as a biocatalyst where dimethyl 2,5-furandicarboxylate (DMFDCA), α,ω-aliphatic linear diols (α,ω-ALD), and bio-based dilinoleic diol (DLD) were used as the starting materials. Nuclear magnetic spectroscopy (1H and 13C NMR), Fourier transform spectroscopy (FTIR) and size exclusion chromatography (SEC) were used to analyze the resulting copolymers. Additionally, crystallization behavior and thermal properties were studied using X-ray diffraction (XRD), digital holographic microscopy (DHM), and differential scanning microscopy (DSC). Finally, oxygen transmission rates (OTR) and dynamic mechanical analysis (DMTA) of furan-based copolyesters indicated their potential for medical packaging.
Collapse
Affiliation(s)
- Martyna Sokołowska
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science Al. Piastow 45 71-311 Szczecin Poland
| | - Jagoda Nowak-Grzebyta
- Poznan University of Technology, Faculty of Mechanical Engineering Ul. Piotrowo 3 60-965 Poznan Poland
| | - Ewa Stachowska
- Poznan University of Technology, Faculty of Mechanical Engineering Ul. Piotrowo 3 60-965 Poznan Poland
| | - Piotr Miądlicki
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Engineering of Catalytic and Sorbent Materials Department Al. Piastow 45 71-311 Szczecin Poland
| | - Magdalena Zdanowicz
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences, Center of Bioimmobilisation and Innovative Packaging Materials Ul. Janickiego 35 71-270 Szczecin Poland
| | - Beata Michalkiewicz
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Engineering of Catalytic and Sorbent Materials Department Al. Piastow 45 71-311 Szczecin Poland
| | - Miroslawa El Fray
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science Al. Piastow 45 71-311 Szczecin Poland
| |
Collapse
|
2
|
Lee TH, Forrester M, Wang TP, Shen L, Liu H, Dileep D, Kuehl B, Li W, Kraus G, Cochran E. Dihydroxyterephthalate-A Trojan Horse PET Counit for Facile Chemical Recycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210154. [PMID: 36857624 DOI: 10.1002/adma.202210154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/04/2023] [Indexed: 05/26/2023]
Abstract
Here, low-energy poly(ethylene terephthalate) (PET) chemical recycling in water: PET copolymers with diethyl 2,5-dihydroxyterephthalate (DHTE) undergo selective hydrolysis at DHTE sites, autocatalyzed by neighboring group participation, is demonstrated. Liberated oligomeric subchains further hydrolyze until only small molecules remain. Poly(ethylene terephthalate-stat-2,5-dihydroxyterephthalate) copolymers were synthesized via melt polycondensation and then hydrolyzed in 150-200 °C water with 0-1 wt% ZnCl2 , or alternatively in simulated sea water. Degradation progress follows pseudo-first order kinetics. With increasing DHTE loading, the rate constant increases monotonically while the thermal activation barrier decreases. The depolymerization products are ethylene glycol, terephthalic acid, 2,5-dihydroxyterephthalic acid, and bis(2-hydroxyethyl) terephthalate dimer, which could be used to regenerate virgin polymer. Composition-optimized copolymers show a decrease of nearly 50% in the Arrhenius activation energy, suggesting a 6-order reduction in depolymerization time under ambient conditions compared to that of PET homopolymer. This study provides new insight to the design of polymers for end-of-life while maintaining key properties like service temperature and mechanical properties. Moreover, this chemical recycling procedure is more environmentally friendly compared to traditional approaches since water is the only needed material, which is green, sustainable, and cheap.
Collapse
Affiliation(s)
- Ting-Han Lee
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Michael Forrester
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Tung-Ping Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Liyang Shen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Dhananjay Dileep
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Baker Kuehl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - George Kraus
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Eric Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
3
|
High-value copolyamide 6 materials with colorless transparent and low water absorption upgraded from upcycled and biomass comonomers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Wang Y, Shao J, Zhu P, Wang L, Wang D, Dong X. Brill Transition in Polyamide 1012 Multiblock Poly(tetramethylene oxide) Copolymers: The Effect of Composition on Hydrogen-Bonding Organization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianming Shao
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Zhu
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dujin Wang
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Dong
- CAS Key Laboratory of Engineer Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Lee TH, Liu H, Forrester MJ, Shen L, Wang TP, Yu H, He JH, Li W, Kraus GA, Cochran EW. Next-Generation High-Performance Biobased Naphthalate-Modified PET for Sustainable Food Packaging Applications. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ting-Han Lee
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J. Forrester
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Liyang Shen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Tung-ping Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Huangchao Yu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jia-Hao He
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - George A. Kraus
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Eric W. Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
6
|
Carter P, Trettin JL, Lee TH, Chalgren NL, Forrester MJ, Shanks BH, Tessonnier JP, Cochran EW. Bioenabled Platform to Access Polyamides with Built-In Target Properties. J Am Chem Soc 2022; 144:9548-9553. [PMID: 35522967 DOI: 10.1021/jacs.2c01397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diversification of platform chemicals is key to today's petroleum industry. Likewise, the flourishing of tomorrow's biorefineries will rely on molecules with next-generation properties from biomass. Herein, we explore this opportunity with a novel approach to monomers with custom property enhancements. Cyclic diacids with alkyl and aromatic decorations were synthesized from muconic acid by Diels-Alder cycloaddition, and copolymerized with hexamethylenediamine and adipic acid to yield polyamides with built-in hydrophobicity and flame retardancy. Testing shows a 70% reduction in water uptake and doubling of char production while largely retaining other key properties of the parent Nylon-6,6. The present approach can be generalized to access a wide range of performance-advantaged polyamides.
Collapse
Affiliation(s)
- Prerana Carter
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - James L Trettin
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Ting-Han Lee
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nickolas L Chalgren
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J Forrester
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Brent H Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States.,Center for Biorenewable Chemicals (CBiRC), Ames, Iowa 50011, United States
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|