1
|
Lang C, Gong H, Ye G, Murugan P, Xie ZH, Dai YF, Yang K, Yu C, Liu SY. D 1-D 2-A ternary conjugated microporous polymers synthesized via direct CH arylation for enhancing photocatalytic hydrogen evolution. J Colloid Interface Sci 2025; 688:818-829. [PMID: 40043482 DOI: 10.1016/j.jcis.2025.02.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Conjugated microporous polymers (CMPs), featured by broad tunability in molecule design, structure and properties, have been widely used as photocatalysts for water splitting to produce hydrogen. However, the conventional donor-acceptor (D-A) binary CMPs have not achieved satisfactory performance so far. In this contribution, a series of D1-D2-A ternary CMPs are synthesized by the atom-economical direct CH arylation polymerization (DArP), wherein the dibenzo[b,d]thiophene-S,S-dioxide (BTDO), tetraphenylethylene (TPE) and 3,4-ethylenedioxythiophene (EDOT) units serve as the acceptor (A), donor D1 and donor D2, respectively. The structure-property correlations of the CMPs are systematically investigated by optical, electrochemical, water contact angle, and hydrogen production performance tests, revealing that the ternary D1-D2-A CMPs can maximize hydrophilicity and charge separation through the synergistic effect of BTDO, EDOT, and TPE building blocks. As a result, the ternary CMP-3 with an optimal D/A ratio achieves the highest photocatalytic hydrogen evolution rate up to 81.4 mmol g-1 h-1 without the aid of Pt co-catalyst, which has a 26-fold and 101-fold improvement compared to the pristine D1-A and D1-D2 binary CMPs, respectively. Meanwhile, a high apparent quantum yield of 11.1 % at 500 nm is successfully achieved. Density functional theory calculation discloses that D1-D2-A ternary CMPs possess the desirable molecular geometry and superior charge separation. This work provides a new design and synthetic strategy for the high-performance CMP-based photocatalysts.
Collapse
Affiliation(s)
- Can Lang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 China
| | - Hao Gong
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 China
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062 China
| | - Pachaiyappan Murugan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Zheng-Hui Xie
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 China
| | - Yi-Fan Dai
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 China
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 China
| | - Changlin Yu
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 China; School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China.
| |
Collapse
|
2
|
Mohamed MG, Mekhemer IMA, Selim AFH, Katsamitros A, Tasis D, Basit A, Chou HH, Kuo SW. Molecular engineering of donor-acceptor-type conjugated microporous polymers for dual effective photocatalytic production of hydrogen and hydrogen peroxide. MATERIALS HORIZONS 2025. [PMID: 40400351 DOI: 10.1039/d5mh00735f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Conjugated microporous polymers (CMPs) have garnered increasing attention as emerging polymeric photocatalysts for solar-driven hydrogen (H2) and hydrogen peroxide (H2O2) production, owing to their high surface areas, extended π-conjugation, and tunable architectures. In pursuit of this goal, we undertook the rational design and synthesis of two donor-acceptor CMPs, PyPh-DBZS and ANTh-DBZS, via Suzuki coupling polymerization. These CMPs integrate electron-rich pyrene (PyPh) or tetrathienoanthracene (ANTh) donor units with the electron-deficient benzothiophene S,S-dioxide (DBZS) acceptor moiety, enabling efficient dual photocatalytic generation of H2 and H2O2. Notably, both polymers exhibit excellent thermal stability with T10 values exceeding 590 °C and high char yields at 800 °C. PyPh-DBZS CMP exhibited an exceptional H2 evolution rate (HER) of 133 241 μmol g-1 h-1. At the same time, ANTh-DBZS CMP achieved superior H2O2 production (24.51 mM g-1), demonstrating structure-dependent charge separation under visible light irradiation. These results offer critical design principles for the rational emergence of new-generation CMPs photocatalysts, paving the way toward efficient and sustainable H2 and H2O2 production.
Collapse
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt.
| | - Islam M A Mekhemer
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt.
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | - Ahmed F H Selim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71515, Egypt.
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
| | | | - Dimitrios Tasis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina 45110, Greece
| | - Abdul Basit
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
- Photonics Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Chen Q, Tian L, Ren W, Zhang X, Li G, Wang S, Zhang G, Lan ZA. Nitrogen Modified Linear Polythiophene Derivatives with Polarized Charge Distribution for Red Light-Induced Photocatalysis. CHEMSUSCHEM 2025; 18:e202402322. [PMID: 39838912 DOI: 10.1002/cssc.202402322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/23/2025]
Abstract
Elevating the long-wavelength activation of photocatalysts represents a formidable approach to optimizing sunlight utilization. Polythiophene (PTh), although renowned for its robust light absorption and excellent conductivity, is largely overlooked for its potential as a photocatalyst due to the swift recombination of photogenerated charge carriers. Herein, we unveil that the strategic introduction of an aromatic ring containing varying nitrogen content into PTh instigates polarized charge distribution and facilitates the narrowing of the band gap, thereby achieving efficient photocatalytic activities for both hydrogen and hydrogen peroxide generation. Notably, the best sample, PTh-N2, even demonstrates photocatalytic activity in the red light region (600-700 nm). This study offers a promising avenue for the development of polymer photocatalysts with efficient photocatalytic performance for red light-induced photocatalysis.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Lin Tian
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wei Ren
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuqing, 350300, P. R. China
| | - Xirui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guosheng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- Provincial Key Laboratory of Environmental Health and Land Resource, College of Environmental and Chemical Enginee, ring, Zhaoqing University, Zhaoqing, 526061, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
4
|
Xie ZH, Ye G, Gong H, Murugan P, Lang C, Dai YF, Yang K, Liu SY. Ultrahigh photocatalytic hydrogen evolution of linear conjugated terpolymers enabled by an ultra-low ratio of the benzothiadiazole monomer. Chem Sci 2025:d5sc01438g. [PMID: 40336994 PMCID: PMC12053733 DOI: 10.1039/d5sc01438g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025] Open
Abstract
Conjugated terpolymers bearing three kinds of π-monomers have been regarded as a promising platform for photocatalytic hydrogen production (PHP). However, the high-performance terpolymers reported so far typically involve large portions (≥20 mol%) of the third monomer. Efficiently modulating the terpolymer by utilizing minimum content of the third component remains a critical challenge. Herein, we report a donor-acceptor linear terpolymer prepared by atom-economical C-H/C-Br coupling with an ultra-low ratio (0.5 mol%) of benzothiadiazole (BT) as the third monomer, which can efficiently modulate properties and afford a hydrogen evolution rate of up to 222.28 mmol h-1 g-1 with an apparent quantum yield of 24.35% at 475 nm wavelength in the absence of a Pt co-catalyst. Systematic spectroscopic studies reveal that even a minimal amount of the BT monomer can effectively tune the light absorption and frontier molecular orbitals of the resulting terpolymers. Compared to the BT-free BSO2-EDOT bi-polymer, the terpolymer BSED-BT0.5% involving 0.5 mol% of BT has a much faster electron transfer (5.76 vs. 1.13 ns) and much lower exciton binding energy (61.35 vs. 32.03 meV), showcasing an important discovery that the BT building block even with an ultra-low ratio enables the effective modulations of terpolymers with ultra-high PHP performance.
Collapse
Affiliation(s)
- Zheng-Hui Xie
- School of Chemical Engineering, Guangdong University of Petrochemical Technology Maoming Guangdong 525000 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University Youyi Road 368 Wuhan 430062 China
| | - Hao Gong
- School of Chemical Engineering, Guangdong University of Petrochemical Technology Maoming Guangdong 525000 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Pachaiyappan Murugan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences Kancheepuram District Tamil Nadu India
| | - Can Lang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology Maoming Guangdong 525000 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Yi-Fan Dai
- School of Chemical Engineering, Guangdong University of Petrochemical Technology Maoming Guangdong 525000 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou 341000 China
| | - Shi-Yong Liu
- School of Chemical Engineering, Guangdong University of Petrochemical Technology Maoming Guangdong 525000 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology Ganzhou 341000 China
| |
Collapse
|
5
|
Zhang X, Chang M, Wang D, Wang L, Yang X, Ben Z, Zhang Q, Lu Y. Enhanced photocatalytic performance in seawater of donor-acceptor type conjugated polymers through introduction of alkoxy groups in the side chain. J Colloid Interface Sci 2025; 682:1151-1163. [PMID: 39671949 DOI: 10.1016/j.jcis.2024.11.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
Previous studies have demonstrated that the donor (D)-acceptor (A) structure enables conjugated polymers (CPs) to effectively inhibit charge recombination, reduce exciton binding energy to a minimum, and broaden the light absorption spectrum, ultimately enhancing photocatalytic activity. Besides, side chain engineering is an effective approach to enhance photocatalytic performance by regulating surface chemistry and energy band structure of CPs. Herein, three D-A type CPs, namely TPD-T, TPD-MOT and TPD-DOT, were designed and synthesized using thieno[3,4-c]pyrrole-4,6-dione (TPD) as A units and thiophene with different alkyl/alkoxy groups side chain (as 3-octylthiophene (T), 3-methoxythiophene (MOT) and 3,4-ethylenedioxythiophene (DOT)) as D units, via an atom- and step-economic CH/CH cross-coupling polycondensation. The photocatalytic hydrogen production performance of these polymers driven by visible light was systematically evaluated in pure water and natural seawater. The results show that the hydrogen evolution rates (HERs) of the as-synthesized CPs in pure water and natural seawater significantly increased by 5 and 7 times, respectively, when the number of alkoxy groups on the side chain of polymers increased from 0 to 2. In particular, HERs of three polymers in natural seawater are distinctly better than that in pure water. Further, the steady-state photoluminescence (PL), time-resolved fluorescence decay, and electrochemical impedance spectroscopy (EIS) studies combined with density functional theory (DFT) simulations were carried out to figure out the possible mechanism of the enhanced photocatalytic performance of CPs by side chain engineering. This work indicates that side chain engineering contributes significantly to determine the photocatalytic activity of D-A polymers-based photocatalysts, and could serve as guidelines for organic photocatalysts with highly efficient hydrogen evolution performance.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Menghan Chang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Di Wang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lin Wang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuan Yang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M139PL, United Kingdom
| | - Zhaohang Ben
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qiang Zhang
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yan Lu
- Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
6
|
Su Y, Li K, Li Z, Tian Y, Liu B, Yue G, Tian Y. Visible light to the second near-infrared light-harvesting donor-acceptor 1-donor-acceptor 2-type terpolymers for boosted photocatalytic hydrogen evolution via dual-sulfone-acceptor engineering. J Colloid Interface Sci 2024; 661:333-344. [PMID: 38301470 DOI: 10.1016/j.jcis.2024.01.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Developing visible to near-infrared light-absorbing conjugated polymer photocatalysts is crucial for enhancing solar energy utilization efficiency, as most conjugated organic polymers only absorb light in the visible range. In this work, we firstly developed a novel thiophene S,S-dioxide (TDO) monomer with the stronger electron-withdrawing character, and then prepared a series of donor-acceptor1-donor-acceptor2-type (D-A1-D-A2-type) conjugated terpolymers (THTDB-1-THTDB-5) by statistically adjusting the molar ratio of two sulfone-based acceptor monomers, dibenzothiophene-S,S-dioxide (BTDO, A1) and TDO (A2). These terpolymers demonstrate a gradually expanding absorption range from visible light to the second near-infrared (Vis-to-NIR-II) region with the gradual increase of the TDO contents in the polymer skeleton, showcasing excellent absorption properties and efficient light-capturing capabilities. The optimized D-A1-D-A2 polymer photocatalyst THTDB-4 exhibits a high hydrogen evolution rate of 21.27 mmol g-1 h-1 under visible light without any co-catalyst. The dual-sulfone-acceptor engineering offers a viable approach for developing efficient the longer Vis-to-NIR-II light-harvesting polymer photocatalysts.
Collapse
Affiliation(s)
- Yuanle Su
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Keming Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yanting Tian
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baoyou Liu
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan 750003, PR China
| | - Gang Yue
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan 750003, PR China
| | - Yue Tian
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|
7
|
Gong H, Xing Y, Li J, Liu S. Functionalized Linear Conjugated Polymer/TiO 2 Heterojunctions for Significantly Enhancing Photocatalytic H 2 Evolution. Molecules 2024; 29:1103. [PMID: 38474617 DOI: 10.3390/molecules29051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Conjugated polymers (CPs) have attracted much attention in recent years due to their structural abundance and tunable energy bands. Compared with CP-based materials, the inorganic semiconductor TiO2 has the advantages of low cost, non-toxicity and high photocatalytic hydrogen production (PHP) performance. However, studies on polymeric-inorganic heterojunctions, composed of D-A type CPs and TiO2, for boosting the PHP efficiency are still rare. Herein, an elucidation that the photocatalytic hydrogen evolution activity can actually be improved by forming polymeric-inorganic heterojunctions TFl@TiO2, TS@TiO2 and TSO2@TiO2, facilely synthesized through efficient in situ direct C-H arylation polymerization, is given. The compatible energy levels between virgin TiO2 and polymeric semiconductors enable the resulting functionalized CP@TiO2 heterojunctions to exhibit a considerable photocatalytic hydrogen evolution rate (HER). Especially, the HER of TSO2@TiO2 heterojunction reaches up to 11,220 μmol g-1 h-1, approximately 5.47 and 1260 times higher than that of pristine TSO2 and TiO2 photocatalysts. The intrinsic merits of a donor-acceptor conjugated polymer and the interfacial interaction between CP and TiO2 account for the excellent PHP activity, facilitating the separation of photo-generated excitons. Considering the outstanding PHP behavior, our work discloses that the coupling of inorganic semiconductors and suitable D-A conjugated CPs would play significant roles in the photocatalysis community.
Collapse
Affiliation(s)
- Hao Gong
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yuqin Xing
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Jinhua Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shiyong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
8
|
Li Y, Wu L, Wang K, Zhou B, Li Q, Li Z, Yan B, Gong C, Wang Q, Jia J, Shen HM, Deng S, Zhang W, She Y. Nitrogen-Rich Conjugated Microporous Polymers with Improved Cobalt(II) Density for Highly Efficient Electrocatalytic Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8903-8912. [PMID: 38324390 DOI: 10.1021/acsami.3c18620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Developing efficient oxygen evolution catalysts (OECs) made from earth-abundant elements is extremely important since the oxygen evolution reaction (OER) with sluggish kinetics hinders the development of many energy-related electrochemical devices. Herein, an efficient strategy is developed to prepare conjugated microporous polymers (CMPs) with abundant and uniform coordination sites by coupling the N-rich organic monomer 2,4,6-tris(5-bromopyrimidin-2-yl)-1,3,5-triazine (TBPT) with Co(II) porphyrin. The resulting CMP-Py(Co) is further metallized with Co2+ ions to obtain CMP-Py(Co)@Co. Structural characterization results reveal that CMP-Py(Co)@Co has higher Co2+ content (12.20 wt %) and affinity toward water compared with CMP-Py(Co). Moreover, CMP-Py(Co)@Co exhibits an excellent OER activity with a low overpotential of 285 mV vs RHE at 10 mA cm-2 and a Tafel slope of 80.1 mV dec-1, which are significantly lower than those of CMP-Py(Co) (335 mV vs RHE and 96.8 mV dec-1). More interestingly, CMP-Py(Co)@Co outperforms most reported porous organic polymer-based OECs and the benchmark RuO2 catalyst (320 mV vs RHE and 87.6 mV dec-1). Additionally, Co2+-free CMP-Py(2H) has negligible OER activity. Thereby, the enhanced OER activity of CMP-Py(Co)@Co is attributed to the incorporation of Co2+ ions leading to rich active sites and enlarged electrochemical surface areas. Density functional theory (DFT) calculations reveal that Co2+-TBPT sites have higher activity than Co2+-porphyrin sites for the OER. These results indicate that the introduction of rich active metal sites in stable and conductive CMPs could provide novel guidance for designing efficient OECs.
Collapse
Affiliation(s)
- Yanzhe Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Keke Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bolin Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiang Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengrun Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Yan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianhong Jia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Min Shen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengwei Deng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Zhang Z, Liu Z, Xue C, Chen H, Han X, Ren Y. Amorphous porous organic polymers containing main group elements. Commun Chem 2023; 6:271. [PMID: 38081929 PMCID: PMC10713640 DOI: 10.1038/s42004-023-01063-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/16/2023] [Indexed: 10/23/2024] Open
Abstract
Amorphous porous organic polymers (aPOPs) are a type of highly crosslinked polymers. These polymers are generally constructed from rigid organic building blocks, which have become an important subclass of POPs with diverse applications. In the early stage of development, a wide range of carbon-based building blocks and network forming chemistry afforded a large library of aPOPs with rich structures and properties. Recently, implanting main group elements with diverse geometric structures and electronic configurations into aPOPs has proven to be a useful tool to fine-tune the structures and properties of these polymers. Herein, we outline the recent advances in the field of main group (MG)-aPOPs where main-group elements either played unique roles in tuning the structures and properties of MG-aPOPs, or offered new strategies in the synthesis of MG-aPOPs. Furthermore, this Review discusses various challenges remaining in the field from the perspectives of synthetic strategies and characterization techniques, and presents some specific studies that may potentially address the challenges.
Collapse
Affiliation(s)
- Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaoxin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hongyi Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xue Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Ru C, Wang Y, Chen P, Zhang Y, Wu X, Gong C, Zhao H, Wu J, Pan X. Replacing CC Unit with B←N Unit in Isoelectronic Conjugated Polymers for Enhanced Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302384. [PMID: 37116108 DOI: 10.1002/smll.202302384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Three linear isoelectronic conjugated polymers PCC, PBC, and PBN are synthesized by Suzuki-Miyaura polycondensation for photocatalytic hydrogen (H2 ) production from water. PBN presented an excellent photocatalytic hydrogen evolution rate (HER) of 223.5 µmol h-1 (AQY420 = 23.3%) under visible light irradiation, which is 7 times that of PBC and 31 times that of PCC. The enhanced photocatalytic activity of PBN is due to the improved charge separation and transport of photo-induced electrons/holes originating from the lower exciton binding energy (Eb ), longer fluorescence lifetime, and stronger built-in electric field, caused by the introduction of the polar B←N unit into the polymer backbone. Moreover, the extension of the visible light absorption region and the enhancement of surface catalytic ability further increase the activity of PBN. This work reveals the potential of B←N fused structures as building blocks as well as proposes a rational design strategy for achieving high photocatalytic performance.
Collapse
Affiliation(s)
- Chenglong Ru
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yue Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Peiyan Chen
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yahui Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xuan Wu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chenliang Gong
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao Zhao
- School of Physics and Electronic Information, Yantai University, 30 Qingquan Road, Yantai, 264005, China
| | - Jincai Wu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaobo Pan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Han X, Xue C, Zhao Z, Peng M, Wang Q, Liu H, Yu N, Pu C, Ren Y. Synthesis and Characterizations of Polythiophene Networks with Nonplanar BN Lewis Pair Building Blocks. ACS Macro Lett 2023:961-967. [PMID: 37384854 DOI: 10.1021/acsmacrolett.3c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Doping the boron (B) element endowed organic π-conjugated polymers (OCPs) with intriguing optoelectronic properties. Herein, we introduce a new series of thienylborane-pyridine (BN) Lewis pairs via the facile reactions between thienylborane and various pyridine derivatives. Particularly, we developed a "one-pot" synthetic protocol to access BN2 with an unstable 4-bromopyridine moiety. Polycondensations between the BN Lewis pairs and distannylated thiophene afforded a new series of BN-cross-linked polythiophenes (BN-PTs). Experiments revealed that BN-PTs exhibited highly uniform chemical structures, particularly the uniform chemical environment of B-centers. BN-PTs showed good stability in the solid state. PBN2 even maintained the uniform B-center under high temperature or moisture conditions. The studies further suggested that the presence of topological BN structures endowed the polymers with strong intramolecular charge separation character. As a proof of concept, a representative BN-PT was tested as the catalyst for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Xue Han
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhuo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Min Peng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qing Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haiming Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chaodan Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
12
|
Yang L, Yan W, Yang N, Wang G, Bi Y, Tian C, Liu H, Zhu X. Regulating π-Conjugation in sp 2 -Carbon-Linked Covalent Organic Frameworks for Efficient Metal-Free CO 2 Photoreduction with H 2 O. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208118. [PMID: 36965021 DOI: 10.1002/smll.202208118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The development of sp2 -carbon-linked covalent organic frameworks (sp2 c-COFs) as artificial photocatalysts for solar-driven conversion of CO2 into chemical feedstock has captured growing attention, but catalytic performance has been significantly limited by their intrinsic organic linkages. Here, a simple, yet efficient approach is reported to improve the CO2 photoreduction on metal-free sp2 c-COFs by rationally regulating their intrinsic π-conjugation. The incorporation of ethynyl groups into conjugated skeletons affords a significant improvement in π-conjugation and facilitates the photogenerated charge separation and transfer, thereby boosting the CO2 photoreduction in a solid-gas mode with only water vapor and CO2 . The resultant CO production rate reaches as high as 382.0 µmol g-1 h-1 , ranking at the top among all additive-free CO2 photoreduction catalysts. The simple modulation approach not only enables to achieve enhanced CO2 reduction performance but also simultaneously gives a rise to extend the understanding of structure-property relationship and offer new possibilities for the development of new π-conjugated COF-based artificial photocatalysts.
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenkai Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Na Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| | - Guofeng Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chengcheng Tian
- School of Resources and Environment Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiang Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| |
Collapse
|
13
|
Liu X, Du Y, Zhao Y, Huang Z, Jing X, Wang D, Yu L, Sun M. Main/side chain asymmetric molecular design enhances charge transfer of two-dimensional conjugated polymer/g-C 3N 4 heterojunctions for high-efficiency photocatalytic sterilization and degradation. J Colloid Interface Sci 2023; 641:619-630. [PMID: 36963255 DOI: 10.1016/j.jcis.2023.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Heterojunctions based on conjugated polymers (PHJs) are of promise as photocatalysts. Here, we fabricate the two-dimensional benzodithiophene (BDT) and thieno[2,3-f]benzofuran (TBF) based conjugated polymers/g-C3N4 PHJs creatively using the symmetry-breaking strategy. PD1 and PD3 with the asymmetric backbone TBF have better crystallinity. Moreover, PD3 utilizing fluorinated benzotriazole as the electron acceptor unit possesses more compact π - π stacking and higher charge mobility. The conjugated polymer PD5 with asymmetric side chains in the donor unit BDT guarantees more efficient charge transfer in the corresponding PD5/g-C3N4 PHJ while maintaining comparable light utilization rate. Consequently, PD5/g-C3N4 shows the champion performance with photocatalytic sterilization rates reaching 99.1% and 97.3% for S. aureus and E. coli. Notably, the reaction rate constant for Rhodamine B degradation of PD5/g-C3N4 is 8 times that of g-C3N4, a record high among conjugated polymers/g-C3N4. This study aims to reveal the structure - property correlation of asymmetric conjugated polymers/g-C3N4 for potential photocatalysis applications.
Collapse
Affiliation(s)
- Xiaojie Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yahui Du
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yong Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ziwei Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xin Jing
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongxue Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mingliang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
14
|
Chen D, Chen W, Wu Y, Wang L, Wu X, Xu H, Chen L. Covalent Organic Frameworks Containing Dual O 2 Reduction Centers for Overall Photosynthetic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2023; 62:e202217479. [PMID: 36576381 DOI: 10.1002/anie.202217479] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Covalent organic frameworks (COFs) are highly desirable for achieving high-efficiency overall photosynthesis of hydrogen peroxide (H2 O2 ) via molecular design. However, precise construction of COFs toward overall photosynthetic H2 O2 remains a great challenge. Herein, we report the crystalline s-heptazine-based COFs (HEP-TAPT-COF and HEP-TAPB-COF) with separated redox centers for efficient H2 O2 production from O2 and pure water. The spatially and orderly separated active sites in HEP-COFs can efficiently promote charge separation and enhance photocatalytic H2 O2 production. Compared with HEP-TAPB-COF, HEP-TAPT-COF exhibits higher H2 O2 production efficiency for integrating dual O2 reduction active centers of s-heptazine and triazine moieties. Accordingly, HEP-TAPT-COF bearing dual O2 reduction centers exhibits a remarkable solar-to-chemical energy efficiency of 0.65 % with a high apparent quantum efficiency of 15.35 % at 420 nm, surpassing previously reported COF-based photocatalysts.
Collapse
Affiliation(s)
- Dan Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Weiben Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Yuting Wu
- Department of Polymer Science and Engineering, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Wang
- Department of Polymer Science and Engineering, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaojun Wu
- Department of Polymer Science and Engineering, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hangxun Xu
- Department of Polymer Science and Engineering, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
15
|
Chen P, Ru C, Hu L, Yang X, Wu X, Zhang M, Zhao H, Wu J, Pan X. Construction of Efficient D–A-Type Photocatalysts by B–N Bond Substitution for Water Splitting. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Leilei Hu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xuan Yang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, People’s Republic of China
| | - Xuan Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Mingcai Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hao Zhao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- School of Physics and Electronic Information, Yantai University, 30 Qingquan Road, Yantai 264005, People’s Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000 People’s Republic of China
- Key Laboratory of Petroleum Resources Research, Gansu Province, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
16
|
Liang R, Luo J, Lin S, Li Z, Dong Z, Wu Y, Wang Y, Cao X, Meng C, Yu F, Liu Y, Zhang Z. Boosting the Photoreduction Uranium Activity for Donor–acceptor–acceptor Type Conjugated Microporous Polymers by Statistical Copolymerization. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Ru C, Chen P, Wu X, Chen C, Zhang J, Zhao H, Wu J, Pan X. Enhanced Built-in Electric Field Promotes Photocatalytic Hydrogen Performance of Polymers Derived from the Introduction of B←N Coordination Bond. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204055. [PMID: 36285682 PMCID: PMC9762295 DOI: 10.1002/advs.202204055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/29/2022] [Indexed: 05/15/2023]
Abstract
High concentrations of active carriers on the surface of a semiconductor through energy/electron transfer are the core process in the photocatalytic hydrogen production from water. However, it remains a challenge to significantly improve photocatalytic performance by modifying simple molecular modulation. Herein, a new strategy is proposed to enhance the photocatalytic hydrogen evolution performance using boron and nitrogen elements to construct B←N coordination bonds. Experimental results show that polynaphthopyridine borane (PNBN) possessing B←N coordination bonds shows a hydrogen evolution rate of 217.4 µmol h-1 , which is significantly higher than that of the comparison materials 0 µmol h-1 for polyphenylnaphthalene (PNCC) and 0.66 µmol h-1 for polypyridylnaphthalene (PNNC), mainly attributed to the formation of a strong built-in electric field that promotes the separation of photo-generated electrons/holes. This work opens up new prospects for the design of highly efficient polymeric photocatalysts at the molecular level.
Collapse
Affiliation(s)
- Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Xuan Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Changjuan Chen
- College of Chemistry and Pharmaceutical EngineeringHuanghuai UniversityNo.76 Kaiyuan AvenueZhumadianHenan463000P. R. China
| | - Jin Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Hao Zhao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
- School of Physics and Electronic InformationYantai University30 Qingquan RoadYantaiShandong264005China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University)Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceCollege of Chemistry and Chemical EngineeringLanzhou UniversityNo. 222 South Tianshui RoadLanzhouGansu730000P. R. China
- Northwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesDonggang West Road 320LanzhouGansu730000P. R. China
- Key Laboratory of Petroleum Resources ResearchChinese Academy of SciencesDonggang West Road 320LanzhouGansu730000P. R. China
| |
Collapse
|
18
|
Mohamed MG, Chang WC, Kuo SW. Crown Ether- and Benzoxazine-Linked Porous Organic Polymers Displaying Enhanced Metal Ion and CO 2 Capture through Solid-State Chemical Transformation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wan-Chun Chang
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
19
|
Han C, Xiang S, Ge M, Xie P, Zhang C, Jiang JX. An Efficient Electron Donor for Conjugated Microporous Polymer Photocatalysts with High Photocatalytic Hydrogen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202072. [PMID: 35689304 DOI: 10.1002/smll.202202072] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Conjugated microporous polymers (CMPs) with donor-acceptor (D-A) molecular structure show high photocatalytic activity for hydrogen evolution due to the efficient light-induced electron/hole separation, which is mostly determined by the nature of electron donor and acceptor units. Therefore, the selection of electron donor and acceptor holds the key point to construct high performance polymer photocatalysts. Herein, two dibenzo[b,d]thiophene-S,S-dioxide (BTDO) containing CMP photocatalysts using tetraphenylethylene (TPE) or dibenzo[g,p]chrysene (DBC) as the electron donor to investigate the influence of the geometry of electron donor on the photocatalytic activity are design and synthesized. Compared with the twisted TPE donor, DBC has a planar molecular structure with extended π-conjugation, which promotes the charges transmission and light-induced electron/hole separation. As a result, the polymer DBC-BTDO produced from DBC donor shows a remarkable photocatalytic hydrogen evolution rate (HER) of 104.86 mmol h-1 g-1 under full arc light (λ > 300 nm), which is much higher than that of the polymer TPE-BTDO (1.80 mmol h-1 g-1 ), demonstrating that DBC can be an efficient electron donor for constructing D-A polymer photocatalysts with high photocatalytic activity for hydrogen evolution.
Collapse
Affiliation(s)
- Changzhi Han
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Sihui Xiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Mantang Ge
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Peixuan Xie
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| |
Collapse
|
20
|
Xiao J, Xiao Z, Hu J, Gao X, Asim M, Pan L, Shi C, Zhang X, Zou JJ. Rational Design of Alkynyl-Based Linear Donor−π–Acceptor Conjugated Polymers with Accelerated Exciton Dissociation for Photocatalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jie Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Ziheng Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Jinghui Hu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaokai Gao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Muhammad Asim
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
21
|
Mansha M, Ahmad T, Ullah N, Akram Khan S, Ashraf M, Ali S, Tan B, Khan I. Photocatalytic Water-Splitting by Organic Conjugated Polymers: Opportunities and Challenges. CHEM REC 2022; 22:e202100336. [PMID: 35257485 DOI: 10.1002/tcr.202100336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/11/2022]
Abstract
The future challenges associated with the shortage of fossil fuels and their current environmental impacts intrigued the researchers to look for alternative ways of generating green energy. Solar-driven water splitting into oxygen and hydrogen is one of those advanced strategies. Researchers have studied various semiconductor materials to achieve potential results. However, it encountered multiple challenges such as high cost, low photostability and efficiency, and required multistep modifications. The conjugated polymers (CPs) have emerged as promising alternatives for conventional inorganic semiconductors. The CPs offer low cost, sufficient light absorption efficiency, excellent photo and chemical stability, and molecular optoelectronic tunable characteristics. Furthermore, organic CPs also present higher flexibility to tune the basic framework of the backbone of the polymers, amendments in the sidechain to incorporate desired functionalities, and much-needed porosity to serve better for photocatalytic applications. This review article summarizes the recent advancements made in visible-light-driven water splitting covering the aspects of synthetic strategies and experimental parameters employed for water splitting reactions with special emphasis on conjugated polymers such as linear CPs, planarized CPs, graphitic carbon nitride (g-C3 N4 ), conjugated microporous polymers (CMPs), covalent organic frameworks (COFs), and conjugated polymer-based nanocomposites (CPNCs). The current challenges and future prospects have also been described briefly.
Collapse
Affiliation(s)
- Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tauqir Ahmad
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nisar Ullah
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Ashraf
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Bein Tan
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Ibrahim Khan
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Seoul, 06974, South Korea
| |
Collapse
|
22
|
Lan X, Wang J, Li Q, Wang A, Zhang Y, Yang X, Bai G. Acetylene/Vinylene-Bridged π-Conjugated Covalent Triazine Polymers for Photocatalytic Aerobic Oxidation Reactions under Visible Light Irradiation. CHEMSUSCHEM 2022; 15:e202102455. [PMID: 34962075 DOI: 10.1002/cssc.202102455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Solar-driven photocatalytic chemical transformation provides a sustainable strategy to produce valuable feedstock, but designing photocatalysts with high efficiency remains challenging. Herein, two acetylene- or vinylene-bridged π-conjugated covalent triazine polymers, A-CTP-DPA and V-CTP-DPE, were successfully fabricated toward metal-free photocatalytic oxidation under visible light irradiation. Compared to the one without acetylene or vinylene bridge, both resulting polymers exhibited superior activity in photocatalytic selective oxidation of sulfides and oxidative coupling of amines; in particular, A-CTP-DPA delivered an optimal photocatalytic performance. The superior activity was attributed to the broadened spectral response range, effective separation, rapid transportation of photogenerated charge carriers, and abundant active sites for photogenerated electrons due to the existence of the acetylene bridge in the framework. This work highlights the potential of acetylene and vinylene bridges in tuning catalytic efficiency of organic semiconductors, providing a guideline for the design of efficient photocatalysts.
Collapse
Affiliation(s)
- Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Aiqing Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Xianheng Yang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China
| |
Collapse
|