1
|
Huang H, Wu H, Zhang Y, Feng X. Polyhedral Polymeric Microparticles with Interwoven 1 nm Gyroid Pores for Precise Adsorption and Nanoconfined Degradation. ACS NANO 2025; 19:8926-8938. [PMID: 39993254 DOI: 10.1021/acsnano.4c16888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Molecular-scale adsorption, catalysis, and separation demand nanoporous materials with high permeability, extensive surface areas, and pronounced nanoconfined effects. Fabricating polymeric particles with 3-D interwoven pores of ∼1 nm potentially addresses these needs. However, significant challenges remain in controlling their pore interconnectivity, uniformity, and achieving faceted particle shapes. Herein we present facile fabrication of polyhedral particles possessing interpenetrating 1 nm pores by suspension polymerization of double-gyroid (DG) liquid crystalline droplets. Mechanical stirring of the disordered phase at elevated temperatures, followed by undercooling, leads to the emulsification of DG droplets, as confirmed by synchrotron small-angle X-ray scattering (SAXS). UV-induced cross-linking of the DG droplets preserves the ordered network of 1 nm pores, as characterized by SAXS and microscopy. Intriguingly, due to the elasticity induced by the Ia3̅d periodicities, these particles adopt polyhedral shapes to avoid the elastic energy penalty associated with conventional sphericity. We demonstrate that these faceted particles, featuring 1 nm pores and efficient packing, enable rapid, size-exclusive adsorption and nanoconfined degradation of organic pollutants, driven by their 3-D permeability, high surface area, and enhanced nanoconfinement effects.
Collapse
Affiliation(s)
- Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Yizhou Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Liu D, He S, Luo L, Yang W, Liu Y, Yang S, Shen Z, Chen S, Fan XH. Double gyroid-structured electrolyte based on an azobenzene-containing monomer and its polymer. SOFT MATTER 2024; 20:6424-6430. [PMID: 39087847 DOI: 10.1039/d4sm00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The self-assembled structure has a significant impact on the performance of ion conductors. We prepared a new type of electrolyte with self-assembled structures from an azobenzene-based liquid crystalline (LC) monomer and its corresponding polymer. By doping different amounts of monomers and lithium salt LiTFSI, the self-assembled nanostructure of the electrolyte was changed from lamellae to double gyroid. The ionic conductivity of the azobenzene-based electrolytes with the double gyroid structure was 1.64 × 10-4 S cm-1, higher than most PEO-based polymer electrolytes. The azobenzene-based system provides a new strategy to design solid electrolytes with self-assembled structures that may be potentially used in solid-state lithium-ion batteries.
Collapse
Affiliation(s)
- Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shangming He
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shichu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shuangjun Chen
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Wang Y, Li YX, Li Q, Jia R, Tang Q, Huang H, Zhang Y, Feng X. Highly Ordered Gyroid Nanostructured Polymers: Facile Fabrication by Polymerizable Pluronic Surfactants. ACS Macro Lett 2024; 13:550-557. [PMID: 38634712 DOI: 10.1021/acsmacrolett.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Highly ordered, network-nanostructured polymers offer compelling geometric features and application potential. However, their practical utilization is hampered by the restricted accessibility. Here, we address this challenge using commercial Pluronic surfactants with a straightforward modification of tethering polymerizable groups. By leveraging lyotropic self-assembly, we achieve facile production of double-gyroid mesophases, which are subsequently solidified via photoinduced cross-linking. The exceptionally ordered periodicities of Ia3d symmetry in the photocured polymers are unambiguously confirmed by synchrotron small-angle X-ray scattering (SAXS), which can capture single-crystal-like diffraction patterns. Electron density maps reconstructed from SAXS data complemented by transmission electron microscopy analysis further elucidate the real-space gyroid assemblies. Intriguingly, by tuning the cross-linking through thiol-acrylate chemistry, the mechanical properties of the polymer are modulated without compromising the integrity of Ia3d assemblies. The 3-D percolating gyroid nanochannels demonstrate an ionic conductivity that surpasses that of disordered structures, offering promising prospects for scalable fabrication.
Collapse
Affiliation(s)
- Yinuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Ya-Xin Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Ruoyin Jia
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingchen Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Yizhou Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Su L, Lu F, Li Y, Wang Y, Li X, Zheng L, Gao X. Gyroid Liquid Crystals as Quasi-Solid-State Electrolytes Toward Ultrastable Zinc Batteries. ACS NANO 2024; 18:7633-7643. [PMID: 38411092 DOI: 10.1021/acsnano.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The potential for optimizing ion transport through triply periodic minimal surface (TPMS) structures renders promising electrochemical applications. In this study, as a proof-of-concept, we extend the inherent efficiency and mathematical beauty of TPMS structures to fabricate liquid-crystalline electrolytes with high ionic conductivity and superior structural stability for aqueous rechargeable zinc-ion batteries. The specific topological configuration of the liquid-crystalline electrolytes, featuring a Gyroid geometry, enables the formation of a continuous ion conduction pathway enriched with confined water. This, in turn, promotes the smooth transport of charge carriers and contributes to high ionic conductivity. Meanwhile, the quasi-solid hydrophobic phase assembled by hydrophobic alkyl chains exhibits notable rigidity and toughness, enabling uniform and compact dendrite-free Zn deposition. These merits synergistically enhance the overall performance of the corresponding full batteries. This work highlights the distinctive role of TPMS structures in developing high-performance, liquid-crystalline electrolytes, which can provide a viable route for the rational design of next-generation quasi-solid-state electrolytes.
Collapse
Affiliation(s)
- Long Su
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yanrui Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Yuanqi Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Xia Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China
| | - Xinpei Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, P. R. China
| |
Collapse
|
5
|
Wu H, Yin J, Feng X. Boosting Phosphoric Acid Retention in Polymer Electrolyte Membranes by Zwitterions: Insights from DFT Calculations and MD Simulations. J Phys Chem B 2023. [PMID: 38032234 DOI: 10.1021/acs.jpcb.3c05719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Effective retention of phosphoric acid (PA) is crucial for the efficient operation of fuel cells based on PA-doped polymeric membranes, which is highly challenging due to the moisture-induced loss of PA. Therefore, a comprehensive understanding of the interplay among PA, functional groups, and water is essential for designing membrane materials. Using density functional theory (DFT) calculations and molecular dynamics (MD) simulations, we unveil the remarkable capability of zwitterions to effectively sequester PA, thereby unlocking the potential for fuel cell optimization. Our DFT calculations show that zwitterions, termed "charged proton-accepting bases", exhibit stronger interactions with PA compared to the traditional neutral proton-accepting bases. Furthermore, the presence of water amplifies such a discrepancy, with the zwitterion-PA interactions playing a dominant role in the zwitterion-PA-water cluster due to the strongest affinity of zwitterions to PA. Conversely, the ability of neutral bases to retain PA is significantly attenuated by moisture as the interactions between water and PA surpass those between neutral bases and PA. The strong zwitterion-PA associations arise primarily from the formation of multiple hydrogen bonds. Furthermore, MD simulations reveal the uniform distribution of zwitterions in aqueous environments and their pronounced affinities for both PA and water. In contrast, neutral bases tend to aggregate, interacting limitedly with PA. These findings underscore the effectiveness of zwitterions in boosting PA retention in fuel cells.
Collapse
Affiliation(s)
- Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Jiabin Yin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Bhat B, Pahari S, Kwon JSI, Akbulut MES. Stimuli-responsive viscosity modifiers. Adv Colloid Interface Sci 2023; 321:103025. [PMID: 37871381 DOI: 10.1016/j.cis.2023.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Stimuli responsive viscosity modifiers entail an important class of materials which allow for smart material formation utilizing various stimuli for switching such as pH, temperature, light and salinity. They have seen applications in the biomedical space including tissue engineering and drug delivery, wherein stimuli responsive hydrogels and polymeric vessels have been extensively applied. Applications have also been seen in other domains like the energy sector and automobile industry, in technologies such as enhanced oil recovery. The chemistry and microstructural arrangements of the aqueous morphologies of dissolved materials are usually sensitive to the aforementioned stimuli which subsequently results in rheological sensitivity as well. Herein, we overview different structures capable of viscosity modification as well as go over the rheological theory associated with classical systems studied in literature. A detailed analysis allows us to explore correlations between commonly discussed models such as molecular packing parameter, tube reptation and stress relaxation with structural and rheological changes. We then present five primary mechanisms corresponding to stimuli responsive viscosity modification: (i) packing parameter modification via functional group conditioning and (ii) via dynamic bond formation, (iii) mesh formation by interlinking of network nodes, (iv) viscosity modification by chain conformation changes and (v) viscosity modification by particle jamming. We also overview several recent examples from literature that employ the concepts discussed to create novel classes of intriguing stimuli responsive structures and their corresponding rheological properties. Furthermore, we also explore systems that are responsive to multiple stimuli which can provide enhanced functionality and versatility by providing multi-level and precise actuation. Such systems have been used for programmed site-specific drug delivery.
Collapse
Affiliation(s)
- Bhargavi Bhat
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Silabrata Pahari
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA.
| |
Collapse
|
7
|
Wu H, Huang H, Zhang Y, Lu X, Majewski PW, Feng X. Stabilizing Differential Interfacial Curvatures by Mismatched Molecular Geometries: Toward Polymers with Percolating 1 nm Channels of Gyroid Minimal Surfaces. ACS NANO 2022; 16:21139-21151. [PMID: 36516967 DOI: 10.1021/acsnano.2c09103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft materials with self-assembled networks possess saddle-shaped interfaces with distributed negative Gaussian curvatures. The ability to stabilize such a geometry is critically important for various applications but can be challenging due to the possibly "deficient" packing of the building blocks. This nontrivial challenge has been manifested, for example, by the limited availability of cross-linkable bicontinuous cubic (Q) liquid crystals (LCs), which can be utilized to fabricate compelling polymers with networked nanochannels uniformly sized at ∼1 nm. Here, we devise a facile approach to stabilizing cross-linkable Q mesophases by leveraging the synergistic self-assembly from pairs of scalably synthesized polymerizable amphiphiles. Hybridization of the molecular geometries by mixing significantly increases the propensity of the local deviations in the interfacial curvature specifically required for Q assemblies. "Normal" (type 1) double gyroid LCs possessing 1 nm ionic channels conforming to minimal surfaces can be formulated by simultaneous hydration of the amphiphile mixtures, as opposed to the formation of hexagonal or lamellar mesophases exhibited by the single-amphiphile systems, respectively. Fixation of the bicontinuous network in polymers via radical polymerization has been efficaciously facilitated by the presence of the bifunctional polymerizable groups in one of the employed amphiphiles. High-fidelity lock-in of the ordered continuous 1 nm channels has been unambiguously confirmed by the observation of single-crystal-like diffraction patterns from synchrotron small-angle X-ray scattering and large-area periodicities by transmission electron microscopy. The produced polymeric materials exhibit the required mechanical integrity as well as chemical robustness in a variety of organic solvents that benefit their practical applications for selective transport of ions and molecules.
Collapse
Affiliation(s)
- Hanyu Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| | - Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| | - Yizhou Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, and School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, People's Repubic of China
| | - Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, Anhui230026, People's Repubic of China
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw02089, Poland
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai201620, People's Repubic of China
| |
Collapse
|
8
|
Xie F, Lu F, Liu C, Tian Y, Gao Y, Zheng L, Gao X. Poly(ionic liquid) Membranes Preserving Liquid Crystalline Microstructures for Lithium-Ion Enrichment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Luo J, Yang Q, Tan S, Wang C, Wu Y. Mesomorphic Polymer Hydrogel Stabilizing Ionic Surfactant Self-Assembly for Fuel Cells. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Luo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Qing Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
10
|
Imran OQ, Li P, Kim NK, Gin DL, Osuji CO. Stable cross-linked lyotropic gyroid mesophases from single-head/single-tail cross-linkable monomers. Chem Commun (Camb) 2021; 57:10931-10934. [PMID: 34596176 DOI: 10.1039/d1cc04211d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single-head/single-tail surfactant with a polymerizable group at each end is presented as a new simplified motif for intrinsically cross-linkable, gyroid-phase lyotropic mesogens. The resulting nanoporous polymer networks exhibit excellent structural stability in various solvents and are capable of molecular size discrimination.
Collapse
Affiliation(s)
- Omar Q Imran
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06510, USA.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Patrick Li
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Na Kyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Douglas L Gin
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|