1
|
Vishwakarma A, Narayanan A, Kumar N, Chen Z, Dang F, Menefee J, Dhinojwala A, Joy A. Coacervate Dense Phase Displaces Surface-Established Pseudomonas aeruginosa Biofilms. J Am Chem Soc 2024; 146:26397-26407. [PMID: 39259884 PMCID: PMC11440510 DOI: 10.1021/jacs.4c09311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
For millions of years, barnacles and mussels have successfully adhered to wet rocks near tide-swept seashores. While the chemistry and mechanics of their underwater adhesives are being thoroughly investigated, an overlooked aspect of marine organismal adhesion is their ability to remove underlying biofilms from rocks and prepare clean surfaces before the deposition of adhesive anchors. Herein, we demonstrate that nonionic, coacervating synthetic polymers that mimic the physicochemical features of marine underwater adhesives remove ∼99% of Pseudomonas aeruginosa (P. aeruginosa) biofilm biomass from underwater surfaces. The efficiency of biofilm removal appears to align with the compositional differences between various bacterial biofilms. In addition, the surface energy influences the ability of the polymer to displace the biofilm, with biofilm removal efficiency decreasing for surfaces with lower surface energies. These synthetic polymers weaken the biofilm-surface interactions and exert shear stress to fracture the biofilms grown on surfaces with diverse surface energies. Since bacterial biofilms are 1000-fold more tolerant to common antimicrobial agents and pose immense health and economic risks, we anticipate that our unconventional approach inspired by marine underwater adhesion will open a new paradigm in creating antibiofilm agents that target the interfacial and viscoelastic properties of established bacterial biofilms.
Collapse
Affiliation(s)
- Apoorva Vishwakarma
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Zixi Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Joshua Menefee
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| |
Collapse
|
2
|
Varner S, Balzer C, Wang ZG. A Jacobian-free pseudo-arclength continuation method for phase transitions in inhomogeneous thermodynamic systems. J Chem Phys 2024; 161:064107. [PMID: 39132789 DOI: 10.1063/5.0220849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Developing phase diagrams for inhomogeneous systems in thermodynamics is difficult, in part, due to the large phase space and the possibility of unstable and metastable solutions arising from first-order phase transitions. Pseudo-arclength continuation (PAC) is a method that allows one to trace out stable and unstable solutions of nonlinear systems. Typically, PAC utilizes the Jacobian in order to implement Newton (or quasi-Newton) steps. In this work, we present a Jacobian-free PAC method that is amenable to the usual workflows in inhomogeneous thermodynamics. We demonstrate our method in systems that have first-order phase transitions, including a novel example of polyelectrolyte complex coacervation in confinement, where multiple surface phase transitions occur and can overlap with one another.
Collapse
Affiliation(s)
- Samuel Varner
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher Balzer
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
3
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
4
|
Mondal A, Pal A, Sarkar S, Datta R, De P. Antioxidant Polymers with Phenolic Pendants for the Mitigation of Cellular Oxidative Stress. Biomacromolecules 2024; 25:1649-1659. [PMID: 38331427 DOI: 10.1021/acs.biomac.3c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Overproduction of reactive oxygen species (ROS) in cells is a major health concern as it may lead to various diseases through oxidative damage of biomolecules. Commonly used traditional small molecular antioxidants (polyphenols, carotenoids, vitamins, etc.) have inadequate efficacy in lowering excessive levels of ROS due to their poor aqueous solubility and bioavailability. In response to the widespread occurrence of antioxidant polyphenols in various biorenewable resources, we aimed to develop water-soluble antioxidant polymers with side chain phenolic pendants. Four different types of copolymers (P1-P4) containing phenyl rings with different numbers of hydroxy (-OH) substituents (0: phenylalanine, 1: tyrosyl, 2: catechol, or 3: gallol) were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization with a desired molar mass (8500-10000 g/mol) and a narrow dispersity (Đ ≤ 1.3). After successful characterizations of P1-P4, their in vitro antioxidant properties were analyzed by different methods, including 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+), 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB), and β-carotene (βC) assays. Our results revealed that the gallol pendant polymers can effectively scavenge ROS. Furthermore, electron paramagnetic resonance (EPR) spectroscopy with DPPH• also confirmed the radical quenching ability of the synthesized polymers. The gallol pendant polymers, at a well-tolerated concentration, could effectively penetrate the macrophage cells and restore the H2O2-induced ROS to the basal level. Overall, the present approach demonstrates the efficacy of water-soluble antioxidant polymers with gallol pendants toward the mitigation of cellular oxidative stress.
Collapse
Affiliation(s)
| | | | - Subhasish Sarkar
- Department of General Surgery, College of Medicine and Sagore Dutta Hospital, Kamarhati, Kolkata - 700058, West Bengal, India
| | | | | |
Collapse
|
5
|
Schmidt G, Christ PE, Kertes PE, Fisher RV, Miles LJ, Wilker JJ. Underwater Bonding with a Biobased Adhesive from Tannic Acid and Zein Protein. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37378615 DOI: 10.1021/acsami.3c04009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Herein are presented several adhesive formulations made from zein protein and tannic acid that can bind to a wide range of surfaces underwater. Higher performance comes from more tannic acid than zein, whereas dry bonding required the opposite case of more zein than tannic acid. Each adhesive works best in the environment that it was designed and optimized for. We show underwater adhesion experiments done on different substrates and in different waters (sea water, saline solution, tap water, deionized water). Surprisingly, the water type does not influence the performance to a great deal but the substrate type does. An additional unexpected result was bond strength increasing over time when exposed to water, contradicting general experiments of working with glues. Initial adhesion underwater was stronger compared to benchtop adhesion, suggesting that water helps to make the glue stick. Temperature effects were determined, indicating maximum bonding at about 30 °C and then another increase at higher temperatures. Once the adhesive was placed underwater, a protective skin formed on the surface, keeping water from entering the rest of the material immediately. The shape of the adhesive could be manipulated easily and, once in place, the skin could be broken to induce faster bond formation. Data indicated that underwater adhesion was predominantly induced by tannic acid, cross-linking within the bulk for adhesion and to the substrate surfaces. The zein protein provided a less polar matrix that helped to keep the tannic acid molecules in place. These studies provide new plant-based adhesives for working underwater and for creating a more sustainable environment.
Collapse
Affiliation(s)
- Gudrun Schmidt
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Peter E Christ
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Paige E Kertes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Racheal V Fisher
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Logan J Miles
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry and School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Balzer C, Zhang P, Wang ZG. Wetting behavior of polyelectrolyte complex coacervates on solid surfaces. SOFT MATTER 2022; 18:6326-6339. [PMID: 35976083 DOI: 10.1039/d2sm00859a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The wetting behavior of complex coacervates underpins their use in many emerging applications of surface science, particularly wet adhesives and coatings. Many factors dictate if a coacervate phase will condense on a solid surface, including solution conditions, the nature of the polymer-substrate interaction, and the underlying supernatant-coacervate bulk phase behavior. In this work, we use a simple inhomogeneous mean-field theory to study the wetting behavior of complex coacervates on solid surfaces both off-coexistence (wetting transitions) and on-coexistence (contact angles). We focus on the effects of salt concentration, the polycation/polyanion surface affinity, and the applied electrostatic potential on the wettability. We find that the coacervate generally wets the surface via a first order wetting transition with second order transitions possible above a surface critical point. Applying an electrostatic potential to a solid surface always improves the surface wettability when the polycation/polyanion-substrate interaction is symmetric. For asymmetric surface affinity, the wettability has a nonmonotonic dependence with the applied potential. We use simple scaling and thermodynamic arguments to explain our results.
Collapse
Affiliation(s)
- Christopher Balzer
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | - Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
8
|
Affiliation(s)
- Guido Raos
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Bruno Zappone
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), Via P. Bucci, 33/C, 87036 Rende (CS), Italy
| |
Collapse
|
9
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
10
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jonathan J Wilker
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|