1
|
Abdellatif M, Nomura K. Synthesis of Polyesters Containing Long Aliphatic Methylene Units by ADMET Polymerization and Synthesis of ABA-Triblock Copolymers by One-Pot End Modification and Subsequent Living Ring-Opening Polymerization. ACS OMEGA 2024; 9:9109-9122. [PMID: 38434832 PMCID: PMC10906047 DOI: 10.1021/acsomega.3c07858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The synthesis of high-molecular-weight (Mn up to 62,000 g/mol) polyesters has been achieved by acyclic diene metathesis (ADMET) polymerization of α,ω-dienes prepared from biobased bis(undec-10-enoate) and diols [ethylene glycol (M1), propylene glycol (M2), 1,9-nonanediol (M3), 1,4-benzenedimethanol (M4), and hydroquinone (M5)] using ruthenium-carbene catalysts. Replacement of the solvent during the ADMET polymerization was effective for obtainment of the high-molecular-weight polymers (expressed as P1-P5). The melting temperatures (Tm) in the resultant polyesters were dependent upon the diol (middle) segment employed, and the polymer prepared from M5 exceeded 100 °C (a Tm value of 122.5 °C). The polymerization of M3 and M4 in the presence of 1,4-cis-diacetoxy-2-butene (DAB, as the chain transfer agent) afforded the telechelic polyesters [P3(OAc)2 and P4(OAc)2, respectively] containing acetoxy end groups exclusively. The resultant polymers containing hydroxy group termini [P3(OH)2 and P4(OH)2], prepared by the selective deprotection of the acetoxy end groups, were treated with AlEt3 followed by addition of ε-caprolactone to afford the ABA-type triblock copolymers exclusively, through a living ring-opening polymerization. The depolymerization (hydrolysis) under basic conditions (NaOH aqueous solution) of P3 was explored.
Collapse
Affiliation(s)
- Mohamed
Mehawed Abdellatif
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
- Chemistry
of Tanning Materials and Leather Technology Department, Chemical Industries Research Institute, National Research
Centre, 33 El Buhouth
St., Dokki, Giza BP 12622, Egypt
| | - Kotohiro Nomura
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Chen W, Guo C, Ding H, Yang X, Zhang K. Controlled Ring-Opening Polymerization of Macrocyclic Monomers Based on Ring-Opening/Ring-Closing Cascade Reaction. J Am Chem Soc 2023. [PMID: 37931244 DOI: 10.1021/jacs.3c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The development of a controlled ring-opening polymerization (ROP) method for synthesizing backbone-functionalized and sequence-controlled polymers with well-defined architectures from macrocyclic monomers is highly desirable in polymer chemistry. Herein, we developed a novel general controlled ROP of macrocycles for producing backbone functional and sequence-controlled polyurethanes and polyamides with controlled molecular weights and narrow dispersities (Đ < 1.1). The key to this method is the introduction of a trimethyl lock unit, an efficient cyclization-based self-immolative spacer, into the macrocyclic monomer ring as a "ring-opening trigger." ROP is initiated by the attack of a primary amine nucleophile on the ring-activated carbonate/ester group, leading to the ring opening of the macrocyclic monomer. Subsequently, spontaneous 6-exo-trig cyclization of the trimethyl lock unit occurs, detaching this ring-opening trigger and regenerating the primary amine end group. The regenerated primary amine group can then be used to propagate the polymer chain by iterating the ring-opening-ring-closing cascade reaction. The versatile ROP method can be applied in the synthesis of water-soluble polyurethanes, backbone-degradable polyurethanes and poly(ester amide)s, and sequence-controlled poly(amino acid)s with well-defined macromolecular architectures.
Collapse
Affiliation(s)
- Wensen Chen
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changjuan Guo
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Ding
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Yang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yu G, Xu Q, Lei Z, Lu Y, Xu W, Wu R. Novel polymeric platform produced by photodegradation‐induced rearrangement for a multifunctional negative photoresist. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gang Yu
- College of Chemistry and Chemical Engineering Hunan University Changsha People's Republic of China
| | - Qian Xu
- College of Chemistry and Chemical Engineering Hunan University Changsha People's Republic of China
- Academician Workstation Changsha Medical University Changsha People's Republic of China
| | - Zhiyou Lei
- College of Chemistry and Chemical Engineering Hunan University Changsha People's Republic of China
| | - Yanbing Lu
- College of Chemistry and Chemical Engineering Hunan University Changsha People's Republic of China
| | - Weijian Xu
- College of Chemistry and Chemical Engineering Hunan University Changsha People's Republic of China
| | - Ruoxi Wu
- Department of Water Science and Engineering, College of Civil Engineering Hunan University Changsha People's Republic of China
| |
Collapse
|
4
|
Zhang S, Cao C, Jiang S, Huang H. A General Strategy for Radical Ring-Opening Polymerization of Macrocyclic Allylic Sulfides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuai Zhang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chi Cao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suqiu Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Li S, Ma X, Li R, Sun C, Hu J, Zhang Y. Lipase-catalyzed ring-opening copolymerization of macrocycles for diselenide-functionalized long-chain polycarbonate: Synthesis, kinetic process and ROS responsiveness. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Hu Z, Cao X, Zhang X, Wu B, Luo W, Huang H, Li L, Chen Y. Catalytically Controlled Ring-Opening Polymerization of 2-Oxo-15-crown-5 for Degradable and Recyclable PEG-Like Polyesters. ACS Macro Lett 2022; 11:792-798. [PMID: 35653639 DOI: 10.1021/acsmacrolett.2c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ethylene glycol) (PEG) has been extensively used in diverse applications. However, it is not biodegradable and shows abnormal immune responses. Herein, a fast, controlled, ring-opening polymerization (ROP) of 2-oxo-15-crown-5 (O-15C5) is reported to prepare well-defined PEG-like polyesters, poly(O-15C5). This approach relies on a coordination between the macrocyclic monomer and Na+ that increases the electrophilicity of the carbonyl group of O-15C5 and leads to a fast controlled ROP (dispersity, ĐM < 1.2). Both computational and mechanistic studies show that the selective Na+ binding to the monomer over poly(O-15C5) allows the ring-opening initiation and propagation to be more energetically favorable than side transesterifications. This is the key to control the challenging entropy-driven ROP of O-15C5. Moreover, with the aid of Na+ and organic base, poly(O-15C5) depolymerized readily into O-15C5 in 2 h. Also, it degraded in a buffer of pH 7.4 by hydrolysis.
Collapse
Affiliation(s)
- Zhitao Hu
- School of Materials Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaohui Zhang
- School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Bin Wu
- School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Huahua Huang
- School of Materials Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China
| |
Collapse
|
7
|
Yu Z, Wang M, Chen X, Huang S, Yang H. Ring‐Opening Metathesis Polymerization of a Macrobicyclic Olefin Bearing a Sacrificial Silyloxide Bridge. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Xu‐Man Chen
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Shuai Huang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research State Key Laboratory of Bioelectronics Southeast University Nanjing Jiangsu Province 211189 China
| |
Collapse
|
8
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
9
|
Yu Z, Wang M, Chen XM, Huang S, Yang H. Ring-Opening Metathesis Polymerization of a Macrobicyclic Olefin Bearing a Sacrificial Silyloxide Bridge. Angew Chem Int Ed Engl 2021; 61:e202112526. [PMID: 34693603 DOI: 10.1002/anie.202112526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Ring-opening metathesis polymerization (ROMP) has been regarded as a powerful tool for sequence-controlled polymerization. However, the traditional entropy-driven ROMP of macrocyclic olefins suffers from the lack of ring strain and poor regioselectivity, whereas the relay-ring-closing metathesis polymerization inevitably brings some unnecessary auxiliary structure into each monomeric unit. We developed a macrobicyclic olefin system bearing a sacrificial silyloxide bridge on the α,β'-positions of the double bond as a new class of sequence-defined monomer for regioselective ROMP. The monomeric sequence information is implanted in the macro-ring, while the small ring, a 3-substituted cyclooctene structure with substantial ring tension, can provide not only narrow polydispersity, but also high regio-/stereospecificity. Besides, the silyloxide bridge can be sacrificially cleaved by desilylation and deoxygenation reactions to provide clean-structured, non-auxiliaried polymers.
Collapse
Affiliation(s)
- Zhen Yu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Meng Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Shuai Huang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, 211189, China
| |
Collapse
|