1
|
Pipertzis A, Chroni A, Pispas S, Swenson J. Molecular Dynamics and Self-Assembly in Double Hydrophilic Block and Random Copolymers. J Phys Chem B 2024; 128:11267-11276. [PMID: 39497577 PMCID: PMC11571219 DOI: 10.1021/acs.jpcb.4c05398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
We investigate the self-assembly and dynamics of double hydrophilic block copolymers (DHBCs) composed of densely grafted poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) parent blocks by means of calorimetry, small- and wide-angle X-ray scattering (SAXS/WAXS), and dielectric spectroscopy. A weak segregation strength is evident from X-ray measurements, implying a disordered state and reflecting the inherent miscibility between the host homopolymers. The presence of intermixed POEGMA/PVBTMAC nanodomains results in homogeneous molecular dynamics, as evidenced through isothermal dielectric and temperature-modulated DSC measurements. The intermixed process undergoes a glass transition at a temperature approximately 40 K higher than the vitrification of bulk POEGMA segments, and it shifts to an even higher temperature by increasing the content of the hard block. At temperatures below the intermixed glass transition temperature, the confined POEGMA segments between the glassy intermixed regions contribute to a segmental process featuring (i) reduced glass transition temperature (Tg), (ii) reduced dielectric strength, (iii) broader distribution of relaxation times, and (iv) reduced fragility compared to the POEGMA homopolymer. We also observe two glass transition temperatures of dry PVBTMAC, which we attribute to the backbone and side chain segmental relaxation. To the best of our knowledge, this is the first time in the literature that these glass transitions of dry PVBTMAC have been reported. Finally, this study shows that excellent mixing of the two homopolymers is obtained, and this implies that different properties of this copolymer system can be tailored by adjusting the concentration of each homopolymer.
Collapse
Affiliation(s)
- Achilleas Pipertzis
- Department
of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Angeliki Chroni
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Jan Swenson
- Department
of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
2
|
Wang H, Shi Z, Guo K, Wang J, Gong C, Xie X, Xue Z. Boronic Ester Transesterification Accelerates Ion Conduction for Comb-like Solid Polymer Electrolytes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Hongli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhen Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kairui Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jirong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunli Gong
- Hubei Collaborative Innovation Center for Biomass Conversion and Utilization, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan 432000, Hubei, China
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhigang Xue
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Gavrilov AA, Potemkin II. Copolymers with Nonblocky Sequences as Novel Materials with Finely Tuned Properties. J Phys Chem B 2023; 127:1479-1489. [PMID: 36790352 DOI: 10.1021/acs.jpcb.2c07689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The copolymer sequence can be considered as a new tool to shape the resulting system properties on demand. This perspective is devoted to copolymers with "partially segregated" (or nonblocky) sequences. Such copolymers include gradient copolymers and copolymers with random sequences as well as copolymers with precisely controlled sequences. We overview recent developments in the synthesis of these systems as well as new findings regarding their properties, in particular, self-assembly in solutions and in melts. An emphasis is put on how the microscopic behavior of polymer chains is influenced by the chain sequences. In addition to that, a novel class of approaches allowing one to efficiently tackle the problem of copolymer chain sequence design─data driven methods (artificial intelligence and machine learning)─is discussed.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Semenov Federal Research Center for Chemical Physics, Moscow 119991, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Vaissier Welborn V, Archer WR, Schulz MD. Characterizing Ion-Polymer Interactions in Aqueous Environment with Electric Fields. J Chem Inf Model 2022; 63:2030-2036. [PMID: 36533730 DOI: 10.1021/acs.jcim.2c01048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymers make the basis of highly tunable materials that could be designed and optimized for metal recovery from aqueous environments. While experimental studies show that this approach has potential, it suffers from a limited knowledge of the detailed molecular interaction between polymers and target metal ions. Here, we propose to calculate intrinsic electric fields from polarizable force field molecular dynamics simulations to characterize the driving force behind Eu3+ motion in the presence of poly(ethylenimine methylenephosphonate), a specifically designed metal chelating polymer. Focusing on the metal chelation initiation step (i.e., before binding), we can rationalize the role of each molecule on ion dynamics by projecting these electric fields along the direction of ion motion. We find that the polymer functional groups act indirectly, and the polymer-metal ion interaction is actually mediated by water. This result is consistent with the experimental observation that metal sequestration by these polymers is entropically driven. This study suggests that electric field calculations can help the design of metal chelating polymers, for example, by seeking to optimize polymer-solvent interactions rather than polymer-ion interactions.
Collapse
Affiliation(s)
- Valerie Vaissier Welborn
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia24060, United States
| | - William R. Archer
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia24060, United States
| | - Michael D. Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia24060, United States
| |
Collapse
|
5
|
Lee J, Gao KW, Shah NJ, Kang C, Snyder RL, Abel BA, He L, Teixeira SCM, Coates GW, Balsara NP. Relationship between Ion Transport and Phase Behavior in Acetal-Based Polymer Blend Electrolytes Studied by Electrochemical Characterization and Neutron Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jaeyong Lee
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Kevin W. Gao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Neel J. Shah
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Cheol Kang
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14850, United States
| | - Rachel L. Snyder
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14850, United States
| | - Brooks A. Abel
- Department of Chemistry, University of California, Berkeley, Berkeley, California94720, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Knoxville, Tennessee37830, United States
| | - Susana C. M. Teixeira
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Geoffrey W. Coates
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York14850, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
- Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Lemont, Illinois60439, United States
| |
Collapse
|
6
|
Ion Correlations and Partial Ionicities in the Lamellar Phases of Block Copolymeric Ionic Liquids. ACS Macro Lett 2022; 11:1265-1271. [DOI: 10.1021/acsmacrolett.2c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Grim BJ, Green MD. Thermodynamics and Structure‐Property Relationships of Charged Block Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bradley J. Grim
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| | - Matthew D. Green
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| |
Collapse
|
8
|
Ketkar PM, Epps TH. Nanostructured Block Polymer Electrolytes: Tailoring Self-Assembly to Unlock the Potential in Lithium-Ion Batteries. Acc Chem Res 2021; 54:4342-4353. [PMID: 34783520 DOI: 10.1021/acs.accounts.1c00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusIon-containing solid block polymer (BP) electrolytes can self-assemble into microphase-separated domains to facilitate the independent optimization of ion conduction and mechanical stability; this assembly behavior has the potential to improve the functionality and safety of lithium-ion batteries over liquid electrolytes to meet future demands (e.g., large capacities and long lifetimes) in various applications. However, significant enhancements in the ionic conductivity and processability of BPs must be realized for BP-based electrolytes to become robust alternatives in commercial devices. Toward this end, the controlled modification of BP electrolytes' intra-domain (nanometer-scale) and multi-grain (micrometer-scale) structure is one viable approach; intra-domain ion transport and segmental compatibility (related to the effective Flory-Huggins parameter, χeff) can be increased by tuning the ion and monomer-segment distributions, and the morphology can be selected such that the multi-grain transport is less sensitive to grain size and orientation.To highlight the characteristics of intra-domain structure that promote efficient ion transport, this Account begins by describing the relationship between BP thermodynamics (namely, χeff and the statistical segment length, b, which is indicative of chain stiffness) and local ion concentration. These thermodynamic insights are vital because they inform the selection of synthesis and formulation variables, such as polymer and ion chemistry, polymer molecular weight and composition, and ion concentration, which boost electrolyte performance. In addition to its relationship with local ion transport, χeff is also an important factor with respect to electrolyte processability. For example, a reduced χeff can allow BP electrolytes to be processed at lower temperatures (i.e., lower energy input), with less solvent (i.e., reduced waste), and/or for shorter times (i.e., higher throughput) yet still form desired nanostructures. This Account also examines the impact of electrolyte preparation and processing on the ion transport across nanostructured grains because of grain size and orientation. As morphologies with a 3D-connected versus 2D-connected conducting phase show different sensitivities to conductivity losses that can occur because of the fabrication methods, it is necessary to account for electrolyte processing effects when probing ion transport.The intra-domain and micrometer-scale structure also can be tuned using either tapered BPs (macromolecules with modified monomer-segment composition profiles between two homogeneous blocks) or blends of BPs and homopolymers, independent of the BP molecular weight and composition, as detailed herein. The application of TBPs or BP/HP blends as ion-conducting materials leads to improved ion transport, reduced χeff, and greater availability of morphologies with 3D connectivity relative to traditional (non-tapered and unblended) BP electrolytes. This feature results from the fact that ion transport is related more closely to the monomer-segment distributions within a domain than the overall nanoscale morphology or average polymer/ion mobilities. Taken together, this Account describes how ion transport and processability are influenced by BP architecture and nanostructural features, and it provides avenues to tune nanoassemblies that can contribute to improved lithium-ion battery technologies to meet future demands.
Collapse
|