1
|
Zhu L, Liu L, Varlas S, Wang RY, O'Reilly RK, Tong Z. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics. ACS NANO 2023. [PMID: 37979190 DOI: 10.1021/acsnano.3c09130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Seeded heteroepitaxial growth is a "living" crystallization-driven self-assembly (CDSA) method that has emerged as a promising route to create uniform segmented nanoparticles with diverse core chemistries by using chemically distinct core-forming polymers. Our previous results have demonstrated that crystallization kinetics is a key factor that determines the occurrence of heteroepitaxial growth, but an in-depth understanding of controlling heteroepitaxy from the perspective of crystallization thermodynamics is yet unknown. Herein, we select crystallizable aliphatic polycarbonates (PxCs) with a different number of methylene groups (xCH2, x = 4, 6, 7, 12) in their repeating units as model polymers to explore the effect of lattice match and core compatibility on the seeded growth behavior. Seeded growth of PxCs-containing homopolymer/block copolymer blend unimers from poly(ε-caprolactone) (PCL) core-forming seed platelet micelles exhibits distinct crystal growth behavior at subambient temperatures, which is governed by the lattice match and core compatibility. A case of seeded growth with better core compatibility and a smaller lattice mismatch follows epitaxial growth, where the newly created crystal domain has the same structural orientation as the original platelet substrate. In contrast, a case of seeded growth with better core compatibility but a larger lattice mismatch shows nonepitaxial growth with less-defined crystal orientations in the platelet plane. Additionally, a case of seeded growth with poor core compatibility and larger lattice mismatch results in polydisperse platelet micelles, whereby crystal formation is not nucleated from the crystalline substrate. These findings reveal important factors that govern the specific crystal growth during a seeded growth approach by using compositionally distinct cores, which would further guide researchers in designing 2D segmented materials via polymer crystallization approaches.
Collapse
Affiliation(s)
- Lingyuan Zhu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Liping Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| | - Rui-Yang Wang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zaizai Tong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
2
|
Liao Y, Pérez-Camargo RA, Sardon H, Martínez de Ilarduya A, Hu W, Liu G, Wang D, Müller AJ. Challenging Isodimorphism Concepts: Formation of Three Crystalline Phases in Poly(hexamethylene- ran-octamethylene carbonate) Copolymers. Macromolecules 2023; 56:8199-8213. [PMID: 37900097 PMCID: PMC10601535 DOI: 10.1021/acs.macromol.3c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/01/2023] [Indexed: 10/31/2023]
Abstract
In this work, poly(hexamethylene-ran-octamethylene carbonate) copolycarbonates were synthesized by melt polycondensation in a wide range of compositions. The copolymers displayed some of the characteristic isodimorphic thermal behavior, such as crystallization for all the compositions and a pseudoeutectic behavior of the melting temperature (Tm) versus composition. The pseudoeutectic point was located at 33 mol % poly(octamethylene carbonate) (POC) content (i.e., corresponding to the PH67O33C copolymer). Surprisingly, the crystallinities (Xc) for a wide range of copolymer compositions were higher than those of the parent components, a phenomenon that has not been observed before in isodimorphic random copolymers. The structural characterization, performed by wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering experiments, revealed unexpected results depending on composition. On the one hand, the poly(hexamethylene carbonate) (PHC)- and POC-rich copolymers crystallize in PHC- and POC-type crystals, as expected. Moreover, upon cooling and heating, in situ WAXS experiments evidenced that these materials undergo reversible solid-solid transitions [δ-α (PHC) and δ-α-β (POC)] present in the parent components but at lower temperatures. On the other hand, a novel behavior was found for copolymers with 33-73 mol % POC (including the pseudoeutectic point), which are those with higher crystallinities than the parent components. For these copolymers, a new crystalline phase that is different from that of both homopolymers was observed. The in situ WAXS results for these copolymers confirmed that this novel phase is stable upon cooling and heating and does not show any crystallographic feature of the parent components or their solid-solid transitions. FTIR experiments confirmed this behavior, revealing that the new phase adopts a polyethylene-like chain conformation that differs from the trans-dominant ones exhibited by the parent components. This finding challenges the established concepts of isodimorphism and questions whether a combination of crystallization modes (isodimorphism and isomorphism) is possible in the same family of random copolymers just by changing the composition.
Collapse
Affiliation(s)
- Yilong Liao
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Ricardo A. Pérez-Camargo
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Haritz Sardon
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
| | - Antxon Martínez de Ilarduya
- Department
of Chemical Engineering, Polytechnic University
of Catalonia ETSEIB-UPC, Diagonal 647, Barcelona 08028, Spain
| | - Wenxian Hu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guoming Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dujin Wang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry,
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, Donostia-San Sebastián 20018, Spain
- Ikerbasque,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
3
|
Hung Y, Xiang W, Zou Z, Zhang Y, Wang B, Yu C, Zheng Y, Pan P. Isodimorphic crystallization and thermally-induced crystal transitions in poly(octamethylene-ran-decamethylene carbonate): Critical role of comonomer defects. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Dong Y, Wu J, Hu J, Yan S, Müller AJ, Sun X. Thermal-Field-Tuned Heterogeneous Amorphous States of Poly(vinylidene fluoride) Films with Precise Transition from Nonpolar to Polar Phase. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yufei Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing100029, China
| | - Jinghua Wu
- Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Road, Qingdao266042, China
| | - Jian Hu
- Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Road, Qingdao266042, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing100029, China
- Key Laboratory of Rubber-Plastics of Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, No. 53 Zhengzhou Road, Qingdao266042, China
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009Bilbao, Spain
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Beijing100029, China
| |
Collapse
|
5
|
Pérez-Camargo RA, Liu G, Meabe L, Zhao Y, Sardon H, Müller AJ, Wang D. Using Successive Self-Nucleation and Annealing to Detect the Solid–Solid Transitions in Poly(hexamethylene carbonate) and Poly(octamethylene carbonate). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo Arpad Pérez-Camargo
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leire Meabe
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Ying Zhao
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
- IKESBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|