1
|
Xue T, Li H, Wang Y, Miao H, Li X. Development of Monolithic Hyper-Cross-Linked Polystyrene-Supported Ultrasmall Nano-Ag Catalysts for Enhanced NaBH 4-Mediated Dye Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39556880 DOI: 10.1021/acs.langmuir.4c03166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Synthesizing catalyst supports with appropriate compositions and structures is crucial for reducing the sizes of metal nanoparticles and enhancing their catalytic activities. In this work, a series of monolithic hyper-cross-linked supports (HCP-CC) with hierarchical pores were synthesized. The monolithic structure facilitated easy operation in catalytic reactions, while the composition and structure of HCP-CC could be tailored simultaneously by utilizing the functional cross-linking agent cyanogen chloride. Furthermore, in situ loading of nano-Ag into HCP-CC resulted in the hybrid catalyst HCP-CC-Ag. The synergy of confinement and coordination effect controlled and limited the size of nano-Ag to approximately 3 nm, classifying them as ultrasmall nanoparticles, which ensured outstanding catalytic activity. This hybrid catalyst could improve the reaction rate constant to 0.423 min-1; it efficiently promoted the degradation of organic dye and exhibited great universality and recyclability, making it a potential heterogeneous catalyst for dye wastewater treatment.
Collapse
Affiliation(s)
- Tao Xue
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Hui Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Yuying Wang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Han Miao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xinxin Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
2
|
Agrawal M, Nandan B, Srivastava RK. Unique Crystallization Characteristics of Pickering High Internal Phase Emulsion Templated Porous Constructs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4893-4903. [PMID: 38373200 DOI: 10.1021/acs.langmuir.3c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
To study the crystallization behavior of polymeric chains under the influence of porosity, the thermal properties of various nonporous and porous poly(ε-caprolactone) (PCL) based constructs were investigated. Porous cross-linked PCL nanocomposite constructs were fabricated utilizing in situ polymerization of CL-based surfactant-free Pickering high internal phase emulsions (HIPEs), stabilized using modified fumed silica nanoparticles (mSiNP) at a minimal concentration of 0.6 wt %. The corresponding nanocomposite constructs exhibited polyhedral pore morphology with significant pore roughness due to the presence of mSiNP. DSC thermograms of nonporous constructs illustrated diminished crystallization temperature and kinetics upon cross-linking and inclusion of mSiNP which confirmed suppressed mobility of polymer chains. Further introduction of porosity led to substantial supercooling, resulting in crystallization temperatures as low as -24 °C. Changes in the crystal structure of various nonporous and porous constructs were also studied using XRD. The crystallization behavior of porous constructs was finally evaluated using Jeziorny, Ozawa, and Mo theories under nonisothermal conditions. Significant deviation from the theoretical model, as observed in the case of porous constructs, implied a complex crystallization mechanism that eventually was not only controlled by the chain immobility due to cross-linking but also heterogeneity present in the wall thickness of the constructs. The unique melting-crystallization phenomenon observed in such constructs may further be expanded to other systems of high heat capacity for utilization as energy storage materials.
Collapse
Affiliation(s)
- Meenal Agrawal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| |
Collapse
|
3
|
Niu X, Wan Z, Mhatre SE, Ye Y, Lu Y, Gao G, Bai L, Rojas OJ. Structured Emulgels by Interfacial Assembly of Terpenes and Nanochitin. ACS NANO 2023; 17:25542-25551. [PMID: 38078623 DOI: 10.1021/acsnano.3c09533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Interfacial assemblies formed by colloidal complexation are effective in multiphase stabilization, as shown in structured liquids and Pickering emulgels. Herein, we demonstrate a type of biobased colloidal system that spontaneously stabilizes an organic phase in a continuous hydrogel phase. Specifically, a triterpene extracted from bark (betulin, BE) is added to an organic phase containing a coniferous resin (rosin acid, a diterpene). BE is shown to take part in strong noncovalent interactions with the nanochitin dispersed in the aqueous (hydrogel) phase, leading to a complex of high interfacial activity. The viscoelastic response of the system is rationalized by the presence of a superstable structured dual network. When used as a templating material, the emulgel develops into structured liquids and cryogels. The herein introduced all-biobased type of nanoparticle surfactant system forms a gel ("emulsion-filled" with "aggregated droplets") that features the functional benefits of both betulin and nanochitin.
Collapse
Affiliation(s)
- Xun Niu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sameer E Mhatre
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuhang Ye
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guang Gao
- Life Sciences Institute Imaging Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Long Bai
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Wood Science and Department of Chemistry, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
4
|
Li D, Yin H, Wu Y, Feng W, Xu KF, Xiao H, Li C. Ultrastable High Internal Phase Pickering Emulsions: Forming Mechanism, Processability, and Application in 3D Printing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18829-18841. [PMID: 38011315 DOI: 10.1021/acs.jafc.3c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) are versatile platforms for various applications owing to their low-density, solid-like structure, and large specific surface area. Here, naturally occurring polysaccharide-protein hybrid nanoparticles (PPH NPs) were used to stabilize HIPPEs with an internal phase fraction of 80% at a PPH NP concentration of 1.5%. The obtained HIPPEs displayed a gel-like behavior with excellent stability against centrifugation (10000g, 10 min), temperature (4-121 °C), pH (1.0-11.0), and ionic strength (0-500 mM). Confocal laser scanning microscope and cryo-scanning electron microscopy results showed that PPH NPs contributed to the stability of HIPPEs by effectively adsorbing and anchoring on the surface of the emulsion droplets layer by layer to form a dense 3D network barrier to inhibit droplet coalescence. The rheological analysis showed that the HIPPEs possessed a higher viscosity and lower frequency dependence with increasing PPH NP concentration, suggesting the potential application of such HIPPEs in three-dimensional (3D) printing, which was subsequently confirmed by a 3D printing experiment. This work provides highly stable and processable HIPPEs, which can be developed as facile and reusable materials for numerous applications. They can also be directly used for future food manufacturing, drug and nutrient delivery, and tissue reconstruction.
Collapse
Affiliation(s)
- Dafei Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Yin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yingni Wu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Feng
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Liu CH, Krueger S, Nieh MP. Synthesis of Polymer Nanoweb via a Lipid Template. ACS Macro Lett 2023:993-998. [PMID: 37406157 DOI: 10.1021/acsmacrolett.3c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
We report a generalized platform for synthesizing a polymer nanoweb with a high specific surface area via a bicellar template, composed of 1,2-dipalmitoyl phosphocholine (DPPC), 1,2-dihexanoyl phosphocholine (DHPC), and 1,2-dipalmitoyl phosphoglycerol (DPPG). The pristine bicelle (in the absence of monomer or polymer) yields a variety of well-defined structures, including disc, vesicle, and perforated lamella. The addition of styrene monomers in the mixture causes bicelles to transform into lamellae. Monomers are miscible with DPPC and DPPG initially, while polymerization drives polymers to the DHPC-rich domain, resulting in a polymer nanoweb supported by the outcomes of small angle neutron scattering, differential scanning calorimetry, and transmission electron microscopy.
Collapse
Affiliation(s)
- Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Susan Krueger
- Center for Neutron Research, National Institute of Standard and Technology, Gaithersburg, Maryland 20899, United States
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
6
|
Suresh A, Rowan SJ, Liu C. Macroscale Fabrication of Lightweight and Strong Porous Carbon Foams through Template-Coating Pair Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206416. [PMID: 36527732 DOI: 10.1002/adma.202206416] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Manufacturing of low-density-high-strength carbon foams can benefit the construction, transportation, and packaging industries. One successful route to lightweight and mechanically strong carbon foams involves pyrolysis of polymeric architectures, which is inevitably accompanied by drastic volumetric shrinkage (usually >98%). As such, a challenge of these materials lies in maintaining bulk dimensions of building struts that span orders of magnitude difference in length scale from centimeters to nanometers. This work demonstrates fabrication of macroscale low-density-high-strength carbon foams that feature exceptional dimensional stability through pyrolysis of robust template-coating pairs. The template serves as the architectural blueprint and contains strength-imparting properties (e.g., high node density and small strut dimensions); it is composed of a low char-yielding porous polystyrene backbone with a high carbonization-onset temperature. The coating serves to imprint and transcribe the template architecture into pyrolytic carbon; it is composed of a high char-yielding conjugated polymer with a relatively low carbonization-onset temperature. The designed carbonization mismatch enables structural inheritance, while the decomposition mismatch affords hollow struts, minimizing density. The carbons synthesized through this new framework exhibit remarkable dimensional stability (≈80% dimension retention; ≈50% volume retention) and some of the highest specific strengths (≈0.13 GPa g-1 cm3 ) among reported carbon foams derived from porous polymer templates.
Collapse
Affiliation(s)
- Adarsh Suresh
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave, Chicago, IL, 60637, USA
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Ave, Chicago, IL, 60637, USA
- Chemical and Engineering Sciences, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Acrylate-functionalized hyper-cross-linked polymers: Effect of the porogens in the polymerization on their porosity and adsorption from aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Polysaccharide-based, emulsion-templated, porous poly(urethane urea)s: Composition, catalysis, cell growth. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|