1
|
Wang D, Du J, Lin WL, Li YS, Dong ZB. Thiolation of Terminal Alkynes with Thiuram Disulfide Reagents Using Water as the Hydrogen Source: Stereoselective Synthesis of ( Z)-Vinyl Sulfides. J Org Chem 2023. [PMID: 38019102 DOI: 10.1021/acs.joc.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A stereoselective and environmentally friendly thiolation of terminal alkynes was reported. Thiuram disulfide reagents (tetramethylthiuram disulfide and tetraethylthiuram disulfide) that reacted with alkynes in dimethyl sulfoxide (DMSO)/H2O could give (Z)-vinyl sulfides in good yields (up to 88%). This protocol features broad substrate scope, good stereoselectivity, high atom economy, good yields, and is transition metal-free. Mechanistic studies revealed that water and DMSO served as hydrogen sources, which greatly highlighted the unique reactivity of this special reaction involving two H-atom donors.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jing Du
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wan-Li Lin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yue-Sheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhi-Bing Dong
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Liu S, Zhang M, Lai Z, Tian H, Qiu Y, Li Z. Coral-like Magnetic Particles for Chemoselective Extraction of Anionic Metabolites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32890-32900. [PMID: 35819264 DOI: 10.1021/acsami.2c06922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, advanced chemical biology tools for chemoselective extraction of metabolites are limited. In this study, unique coral-like polymer particles were synthesized via high concentrations of 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS), which are usually used as condensation agents. The polymers can wrap or adhere Fe3O4 nanoparticles (Fe3O4-NPs) to form polymer magnetic microparticles (PMMPs). With abundant NHS-activated moieties on their surface, the coral-like PMMPs could be modified by cystamine for the chemoselective extraction of phosphate/carboxylate anion metabolites from complex biological samples. Finally, 97 metabolites including nucleotides, phosphates, phosphate sugars, carboxylate sugars, and organic acids were extracted and identified from serum, tissues, and cells. These metabolites are involved in four major metabolic pathways including glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and nucleotide metabolism. This study has provided a cost-effective and easy-to-implement preparation of PMMPs with a robust chemoselective extraction ability and versatile applications.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| |
Collapse
|
3
|
Wang Y, Xia Y, Hua Z, Zhang C, Zhang X. Chemoselective Ring-Opening Copolymerization of Five-Membered Cyclic Carbonates and Carbonyl Sulfide toward Poly(thioether)s. Polym Chem 2022. [DOI: 10.1039/d2py01014c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered cyclic carbonate (5-CC) has the advantages of wide availability, low toxicity, and low volatility, but extremely low ring strain makes it a thermodynamically "non-polymerizable" monomer. This work, for the...
Collapse
|