1
|
Delgado-Pujol EJ, Martínez G, Casado-Jurado D, Vázquez J, León-Barberena J, Rodríguez-Lucena D, Torres Y, Alcudia A, Begines B. Hydrogels and Nanogels: Pioneering the Future of Advanced Drug Delivery Systems. Pharmaceutics 2025; 17:215. [PMID: 40006582 PMCID: PMC11859140 DOI: 10.3390/pharmaceutics17020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Conventional drug delivery approaches, including tablets and capsules, often suffer from reduced therapeutic effectiveness, largely attributed to inadequate bioavailability and difficulties in ensuring patient adherence. These challenges have driven the development of advanced drug delivery systems (DDS), with hydrogels and especially nanogels emerging as promising materials to overcome these limitations. Hydrogels, with their biocompatibility, high water content, and stimuli-responsive properties, provide controlled and targeted drug release. This review explores the evolution, properties, and classifications of hydrogels versus nanogels and their applications in drug delivery, detailing synthesis methods, including chemical crosslinking, physical self-assembly, and advanced techniques such as microfluidics and 3D printing. It also examines drug-loading mechanisms (e.g., physical encapsulation and electrostatic interactions) and release strategies (e.g., diffusion, stimuli-responsive, and enzyme-triggered). These gels demonstrate significant advantages in addressing the limitations of traditional DDS, offering improved drug stability, sustained release, and high specificity. Their adaptability extends to various routes of administration, including topical, oral, and injectable forms, while emerging nanogels further enhance therapeutic targeting through nanoscale precision and stimuli responsiveness. Although hydrogels and nanogels have transformative potential in personalized medicine, challenges remain in scalable manufacturing, regulatory approval, and targeted delivery. Future strategies include integrating biosensors for real-time monitoring, developing dual-stimuli-responsive systems, and optimizing surface functionalization for specificity. These advancements aim to establish hydrogels and nanogels as cornerstones of next-generation therapeutic solutions, revolutionizing drug delivery, and paving the way for innovative, patient-centered treatments.
Collapse
Affiliation(s)
- Ernesto J. Delgado-Pujol
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Guillermo Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - David Casado-Jurado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Juan Vázquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Jesús León-Barberena
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - David Rodríguez-Lucena
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| |
Collapse
|
2
|
Voleti VK, Yusuff I, Abdulkadhar MJ, Al-Sadoon MK. Computational Simulation Study-Based Formulation Development and Characterization of MethylprednisoloneLoaded Nanoparticles Containing Chitosan and Pectin to Treat Nocturnal Asthma. Polymers (Basel) 2024; 17:24. [PMID: 39795428 PMCID: PMC11723144 DOI: 10.3390/polym17010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Nocturnal asthma (NA) is a high-prevalence disease that causes severe respiratory issues, leading to death from early midnight to early morning. In this research, nanoparticulate drug delivery system of methylprednisolone (MP) was developed using chitosan (CH) and pectin (PEC). MP is a synthetic corticosteroid medication widely used for its potent anti-inflammatory activity. Computational simulation study (AI-based blend analysis algorithm) was used to identify a better-mixing polymer with MP. MP nanoparticles were formulated by the ionic gelation method with the combination of CH and PEC. To modify the drug release properties, the formed beads were coated with chitosan succinate (CSSC). The morphological characteristics of the beads were determined by SEM analysis. The X-ray radiographic imaging study was used to observe the intactness of MP beads. Histopathological studies were also carried out to find out the toxicity of the beads in the organs of rats. Pectin and chitosan polymers were selected based on the computational simulation study. SEM analysis revealed that the beads had a spherical shape with a rough outer surface. CSSC-coated beads achieved sustained drug release for up to 24 h. X-ray imaging demonstrated the stability of the beads in acidic pH conditions. In vivo pharmacokinetic studies showed that CSSC-coated beads were more stable in the gastrointestinal tract (GIT) than PEC-CH beads and the pure drug. Histological evaluation confirmed that the beads are nontoxic and safe for use in rats. Based on the findings, it was concluded that CSSC-coated beads of MP exhibited superior release properties, making them suitable for a chronomodulated drug delivery system.
Collapse
Affiliation(s)
- Vijaya Kumar Voleti
- Crescent School of Pharmacy, B. S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai 600048, Tamil Nadu, India;
| | - Ismail Yusuff
- Crescent School of Pharmacy, B. S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai 600048, Tamil Nadu, India;
| | - Mohamed Jalaludeen Abdulkadhar
- Crescent Global Outreach Mission Research and Development, B. S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai 600048, Tamil Nadu, India;
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
3
|
Skoulas D, Fallon M, Genoud KJ, O’Brien FJ, Hughes DF, Heise A. Shear-Thinning Extrudable Hydrogels Based on Star Polypeptides with Antimicrobial Properties. Gels 2024; 10:652. [PMID: 39451305 PMCID: PMC11507159 DOI: 10.3390/gels10100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels with low toxicity, antimicrobial potency and shear-thinning behavior are promising materials to combat the modern challenges of increased infections. Here, we report on 8-arm star block copolypeptides based on poly(L-lysine), poly(L-tyrosine) and poly(S-benzyl-L-cysteine) blocks. Three star block copolypeptides were synthesized with poly(S-benzyl-L-cysteine) always forming the outer block. The inner block comprised either two individual blocks of poly(L-lysine) and poly(L-tyrosine) or a statistical block copolypeptide from both amino acids. The star block copolypeptides were synthesized by the Ring Opening Polymerization (ROP) of the protected amino acid N-carboxyanhydrides (NCAs), keeping the overall ratio of monomers constant. All star block copolypeptides formed hydrogels and Scanning Electron Microscopy (SEM) confirmed a porous morphology. The investigation of their viscoelastic characteristics, water uptake and syringe extrudability revealed superior properties of the star polypeptide with a statistical inner block of L-lysine and L-tyrosine. Further testing of this sample confirmed no cytotoxicity and demonstrated antimicrobial activity of 1.5-log and 2.6-log reduction in colony-forming units, CFU/mL, against colony-forming reference laboratory strains of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively. The results underline the importance of controlling structural arrangements in polypeptides to optimize their physical and biological properties.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
| | - Muireann Fallon
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education and Research, Beaumont Hospital, Beaumont, D09 V2N0 Dublin, Ireland; (M.F.); (D.F.H.)
| | - Katelyn J. Genoud
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, D02 YN77 Dublin, Ireland; (K.J.G.); (F.J.O.)
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI, D02 YN77 Dublin, Ireland; (K.J.G.); (F.J.O.)
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
| | - Deirdre Fitzgerald Hughes
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, RCSI Education and Research, Beaumont Hospital, Beaumont, D09 V2N0 Dublin, Ireland; (M.F.); (D.F.H.)
| | - Andreas Heise
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 123 St. Stephen’s Green, D02 YN77 Dublin, Ireland;
- AMBER, The SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
| |
Collapse
|
4
|
Hanif W, Yadav I, Hasan E, Alsulaiman D. Programmable all-DNA hydrogels based on rolling circle and multiprimed chain amplification products. APL Bioeng 2023; 7:046106. [PMID: 37901137 PMCID: PMC10613091 DOI: 10.1063/5.0169063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Soft, biocompatible, and tunable materials offer biomedical engineers and material scientists programmable matrices for a variety of biomedical applications. In this regard, DNA hydrogels have emerged as highly promising biomaterials that offer programmable self-assembly, superior biocompatibility, and the presence of specific molecular identifiable structures. Many types of DNA hydrogels have been developed, yet the programmability of the DNA building blocks has not been fully exploited, and further efforts must be directed toward understanding how to finely tune their properties in a predictable manner. Herein, we develop physically crosslinked all-DNA hydrogels with tunable morphology and controllable biodegradation, based on rolling circle amplification and multiprimed chain amplification products. Through molecular engineering of the DNA sequences and their nano-/microscale architectures, the precursors self-assemble in a controlled manner to produce soft hydrogels in an efficient, cost-effective, and highly tunable manner. Notably, we develop a novel DNA microladder architecture that serves as a framework for modulating the hydrogel properties, including over an order of magnitude change in pore size and up to 50% change in biodegradation rate. Overall, we demonstrate how the properties of this DNA-based biomaterial can be tuned by modulating the amounts of rigid double-stranded DNA chains compared to flexible single-stranded DNA chains, as well as through the precursor architecture. Ultimately, this work opens new avenues for the development of programmable and biodegradable soft materials in which DNA functions not only as a store of genetic information but also as a versatile polymeric biomaterial and molecularly engineered macroscale scaffold.
Collapse
Affiliation(s)
- Wildan Hanif
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Indresh Yadav
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Erol Hasan
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dana Alsulaiman
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Bhat B, Pahari S, Kwon JSI, Akbulut MES. Stimuli-responsive viscosity modifiers. Adv Colloid Interface Sci 2023; 321:103025. [PMID: 37871381 DOI: 10.1016/j.cis.2023.103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/01/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Stimuli responsive viscosity modifiers entail an important class of materials which allow for smart material formation utilizing various stimuli for switching such as pH, temperature, light and salinity. They have seen applications in the biomedical space including tissue engineering and drug delivery, wherein stimuli responsive hydrogels and polymeric vessels have been extensively applied. Applications have also been seen in other domains like the energy sector and automobile industry, in technologies such as enhanced oil recovery. The chemistry and microstructural arrangements of the aqueous morphologies of dissolved materials are usually sensitive to the aforementioned stimuli which subsequently results in rheological sensitivity as well. Herein, we overview different structures capable of viscosity modification as well as go over the rheological theory associated with classical systems studied in literature. A detailed analysis allows us to explore correlations between commonly discussed models such as molecular packing parameter, tube reptation and stress relaxation with structural and rheological changes. We then present five primary mechanisms corresponding to stimuli responsive viscosity modification: (i) packing parameter modification via functional group conditioning and (ii) via dynamic bond formation, (iii) mesh formation by interlinking of network nodes, (iv) viscosity modification by chain conformation changes and (v) viscosity modification by particle jamming. We also overview several recent examples from literature that employ the concepts discussed to create novel classes of intriguing stimuli responsive structures and their corresponding rheological properties. Furthermore, we also explore systems that are responsive to multiple stimuli which can provide enhanced functionality and versatility by providing multi-level and precise actuation. Such systems have been used for programmed site-specific drug delivery.
Collapse
Affiliation(s)
- Bhargavi Bhat
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Silabrata Pahari
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA
| | - Mustafa E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA; Texas A&M Energy Institute, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Thomas JA, Hinton ZR, Korley LTJ. Peptide-polyurea hybrids: a platform for tunable, thermally-stable, and injectable hydrogels. SOFT MATTER 2023; 19:7912-7922. [PMID: 37706333 PMCID: PMC10615840 DOI: 10.1039/d3sm00780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Drawing inspiration from natural systems, such as the highly segmented structures found in silk fibroin, is an important strategy when designing strong, yet dynamic biomaterials. Polymer-peptide hybrids aim to incorporate the benefits of hierarchical polypeptide structures into synthetic platforms that are promising materials for hydrogel systems due to aspects such as their biocompatibility and structural tunability. In this work, we demonstrated the utility of poly(ethylene glycol) (PEG) peptide-polyurea hybrids as self-assembled hydrogels. Specifically, poly(ε-carbobenzyloxy-L-lysine)-b-PEG-b-poly(ε-carbobenzyloxy-L-lysine) and poly(β-benzyl-L-aspartate)-b-PEG-b-poly(β-benzyl-L-aspartate) triblock copolymers were used as the soft segments in linear peptide-polyurea (PPU) hybrids. We systematically examined the effect of peptide secondary structure and peptide segment length on hydrogelation, microstructure, and rheological properties of our PPU hydrogels. Polymers containing α-helical secondary structures resulted in rapid gelation upon the addition of water, as driven by hierarchical assembly of the peptide segments. Peptide segment length dictated gel strength and resistance to deformation via complex relationships. Simulated injection experiments demonstrated that PPU hydrogels recover their original gel network within 10 s of cessation of high shear. Finally, we showed that PPU hydrogels remain solid-like within the range of 10 to 80 °C; however, a unique softening transition occurs at temperatures corresponding to slight melting of secondary structures. Overall, this bioinspired PPU hybrid platform provides opportunities to design synthetic, bioinspired polymers for hydrogels with tunable microstructure and mechanics for a wide range of thermal and injection-based applications.
Collapse
Affiliation(s)
- Jessica A Thomas
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Zachary R Hinton
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - LaShanda T J Korley
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
7
|
Sudheer S, Bandyopadhyay S, Bhat R. Sustainable polysaccharide and protein hydrogel-based packaging materials for food products: A review. Int J Biol Macromol 2023; 248:125845. [PMID: 37473880 DOI: 10.1016/j.ijbiomac.2023.125845] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sustainable food packaging is a necessary element to ensure the success of a food system, the accomplishment of which is weighed in terms of quality retention and ensured products safety. Irrespective of the raised environmental concerns regarding petroleum-based packaging materials, a sustainable analysis and a lab to land assessment should be a priority to eliminate similar fates of new material. Functionalized bio-based hydrogels are one of the smartest packaging inventions that are expected to revolutionize the food packaging industry. Although in this review, the focus relies on recent developments in the sustainable bio-based hydrogel packaging materials, natural biopolymers such as proteins and polysaccharides from which hydrogels could be obtained, the challenges encountered in hydrogel-based packaging materials and the future prospects of hydrogel-based food packaging materials are also discussed. Moreover, the need for 'Life Cycle Assessment' (LCA), stress on certifications and a sustainable waste management system is also suggested which can bring both food and packaging into the same recycling bins.
Collapse
Affiliation(s)
- Surya Sudheer
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| | - Smarak Bandyopadhyay
- Centre of Polymeric Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, Zlin 76001, Czech Republic
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| |
Collapse
|
8
|
Stavroulaki D, Kyroglou I, Skourtis D, Athanasiou V, Thimi P, Sofianopoulou S, Kazaryan D, Fragouli PG, Labrianidou A, Dimas K, Patias G, Haddleton DM, Iatrou H. Influence of the Topology of Poly(L-Cysteine) on the Self-Assembly, Encapsulation and Release Profile of Doxorubicin on Dual-Responsive Hybrid Polypeptides. Pharmaceutics 2023; 15:790. [PMID: 36986652 PMCID: PMC10055909 DOI: 10.3390/pharmaceutics15030790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Τhe synthesis of a series of novel hybrid block copolypeptides based on poly(ethylene oxide) (PEO), poly(l-histidine) (PHis) and poly(l-cysteine) (PCys) is presented. The synthesis of the terpolymers was achieved through a ring-opening polymerization (ROP) of the corresponding protected N-carboxy anhydrides of Nim-Trityl-l-histidine and S-tert-butyl-l-cysteine, using an end-amine-functionalized poly(ethylene oxide) (mPEO-NH2) as macroinitiator, followed by the deprotection of the polypeptidic blocks. The topology of PCys was either the middle block, the end block or was randomly distributed along the PHis chain. These amphiphilic hybrid copolypeptides assemble in aqueous media to form micellar structures, comprised of an outer hydrophilic corona of PEO chains, and a pH- and redox-responsive hydrophobic layer based on PHis and PCys. Due to the presence of the thiol groups of PCys, a crosslinking process was achieved further stabilizing the nanoparticles (NPs) formed. Dynamic light scattering (DLS), static light scattering (SLS) and transmission electron microscopy (TEM) were utilized to obtain the structure of the NPs. Moreover, the pH and redox responsiveness in the presence of the reductive tripeptide of glutathione (GSH) was investigated at the empty as well as the loaded NPs. The ability of the synthesized polymers to mimic natural proteins was examined by Circular Dichroism (CD), while the study of zeta potential revealed the "stealth" properties of NPs. The anticancer drug doxorubicin (DOX) was efficiently encapsulated in the hydrophobic core of the nanostructures and released under pH and redox conditions that simulate the healthy and cancer tissue environment. It was found that the topology of PCys significantly altered the structure as well as the release profile of the NPs. Finally, in vitro cytotoxicity assay of the DOX-loaded NPs against three different breast cancer cell lines showed that the nanocarriers exhibited similar or slightly better activity as compared to the free drug, rendering these novel NPs very promising materials for drug delivery applications.
Collapse
Affiliation(s)
- Dimitra Stavroulaki
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece
| | - Iro Kyroglou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece
| | - Dimitrios Skourtis
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece
| | - Varvara Athanasiou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece
| | - Pandora Thimi
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece
| | - Sosanna Sofianopoulou
- Hellenic Police Headquarters, Forensic Science Division, Chemical and Physical Examinations Department, GR-10442 Athens, Greece
| | - Diana Kazaryan
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece
| | - Panagiota G. Fragouli
- DIDPE, Dyeing, Finishing, Dyestuffs and Advanced Polymers Laboratory, University of West Attica, 250 Thevon Street, GR-12241 Athens, Greece
| | - Andromahi Labrianidou
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, Viopolis, GR-41500 Larissa, Greece
| | - Konstantinos Dimas
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, Viopolis, GR-41500 Larissa, Greece
| | - Georgios Patias
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Hermis Iatrou
- Industrial Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, GR-15771 Athens, Greece
| |
Collapse
|
9
|
Bashir MH, Korany NS, Farag DBE, Abbass MMS, Ezzat BA, Hegazy RH, Dörfer CE, Fawzy El-Sayed KM. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review. Biomolecules 2023; 13:biom13020205. [PMID: 36830575 PMCID: PMC9953024 DOI: 10.3390/biom13020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Nanocomposite biomaterials combine a biopolymeric matrix structure with nanoscale fillers. These bioactive and easily resorbable nanocomposites have been broadly divided into three groups, namely natural, synthetic or composite, based on the polymeric origin. Preparing such nanocomposite structures in the form of hydrogels can create a three-dimensional natural hydrophilic atmosphere pivotal for cell survival and new tissue formation. Thus, hydrogel-based cell distribution and drug administration have evolved as possible options for bone tissue engineering and regeneration. In this context, nanogels or nanohydrogels, created by cross-linking three-dimensional polymer networks, either physically or chemically, with high biocompatibility and mechanical properties were introduced as promising drug delivery systems. The present review highlights the potential of hydrogels and nanopolymers in the field of craniofacial tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Maha H. Bashir
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Nahed S. Korany
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Dina B. E. Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Bassant A. Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Radwa H. Hegazy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence: ; Tel.: +49-431-500-26210
| |
Collapse
|
10
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|