1
|
Chen Q, Xu X, Bo Z. Application of n-Type or p-Type Dopants in Organic Photovoltaics. CHEMSUSCHEM 2025; 18:e202402525. [PMID: 40059284 DOI: 10.1002/cssc.202402525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Compared to inorganic semiconductors, organic semiconductors (OSCs) exhibit lower permittivity and carrier mobility. This is primarily attributed to their weaker van der Waals forces and the significant structural and energetic disorder, ultimately impeding the commercial application of organic photovoltaics (OPVs). However, the introduction of n-type or p-type dopants offers a solution. These dopants effectively eliminate intrinsic traps in OSCs through trap-filling techniques, elevating carrier concentration and mobility, and consequently enhancing overall performance. This article delves into the systematic exploration of n-type and p-type dopant applications in OPVs. It encompasses doping mechanisms, commonly used n-type and p-type dopants, doping methodologies, the strategic distribution of dopants and the effect of doping on device performance. Ultimately, this concept strives to offer invaluable insights and guidance for advancing OPV performance via doping techniques.
Collapse
Affiliation(s)
- Qiaoling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Department College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Kong S, Yang L, Sun Q, Wang T, Pei R, Zhao Y, Wang W, Zhao Y, Cui H, Gu X, Wang X. Metal-Free Catalytic Formation of a Donor-Acceptor-Donor Molecule and Its Lewis Acid-Adduct Singlet Diradical with High-Efficient NIR-II Photothermal Conversion. Angew Chem Int Ed Engl 2024; 63:e202400913. [PMID: 38441914 DOI: 10.1002/anie.202400913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 04/05/2024]
Abstract
We have synthesized a quinone-incorporated bistriarylamine donor-acceptor-donor (D-A-D) semiconductor 1 by B(C6F5)3 (BCF) catalyzed C-H/C-H cross coupling via radical ion pair intermediates. Coordination of Lewis acids BCF and Al(ORF)3 (RF=C(CF3)3) to the semiconductor 1 afforded diradical zwitterions 2 and 3 by integer electron transfer. Upon binding to Lewis acids, the LUMO energy of 1 is significantly lowered and the band gap of the semiconductor is significantly narrowed from 1.93 eV (1) to 1.01 eV (2) and 1.06 eV (3). 2 and 3 are rare near-infrared (NIR) diradical dyes with broad absorption both centered around 1500 nm. By introducing a photo BCF generator, 2 can be generated by light-dependent control. Furthermore, the integer electron transfer process can also be reversibly regulated via the addition of CH3CN. In addition, the temperature of 2 sharply increased and reached as high as 110 °C in 10 s upon the irradiation of near-infrared-II (NIR-II) laser (1064 nm, 0.7 W cm-2), exhibiting a fast response to laser. It displays excellent photothermal stability with a photothermal (PT) conversion efficiency of 62.26 % and high-quality PT imaging.
Collapse
Affiliation(s)
- Shanshan Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Liming Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Runbo Pei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Wenqing Wang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Moleculer-Based Materials, Anhui Normal University, Wuhu, 241002, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Haiyan Cui
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, 200032, China
| |
Collapse
|
3
|
Choudhary D, Garg S, Kaur M, Sohal HS, Malhi DS, Kaur L, Verma M, Sharma A, Mutreja V. Advances in the Synthesis and Bio-Applications of Pyrazine Derivatives: A Review. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2092873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dimple Choudhary
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Meenakshi Verma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| |
Collapse
|