1
|
Xue S, Shi Z, Wang Z, Tan H, Gao F, Zhang Z, Ye Z, Nian S, Han T, Zhang J, Zhao Z, Tang BZ, Zhang Q. Fluorescent robust photoactuator via photo-crosslinking induced single-layered janus polyimide. Nat Commun 2024; 15:10084. [PMID: 39572542 PMCID: PMC11582805 DOI: 10.1038/s41467-024-54386-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Advanced smart polymer materials with the ability of reversible deformation under external stimuli hold great potential in robotics, soft machines, and flexible electronics. However, the complexity and low efficiency for fabricating actuators along with their limited functionality hinder further progress. Here an efficient and mild catalyst-free thiol-yne click polymerization was developed to fabricate photosensitive polyimide (PI) films. Then the fluorescent robust photoactuators with single-layered janus structure were directly obtained via UV assisted photo-crosslinking of the films, exhibiting reversible response driven by a pronounced mismatch in expansion between the front and back sides of the films. Achieving selective, non-uniform spatial distribution within the PI films, rapid and reversible complex morphing of the actuators, along with the capabilities for encrypting, reading, and erasing fluorescent information-all through the use of a single UV light source-becomes straightforward. The robust mechanical property and driving ability of these actuators enable the conversion of light energy into obvious motion even under heavy loads and the leaping through the storage and release of energy, ensuring their potential for practical applications that require durability and reliability.
Collapse
Affiliation(s)
- Shuyu Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zhipanxin Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zaiyu Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China
| | - Shifeng Nian
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Guardià J, Reina JA, Giamberini M, Montané X. An Up-to-Date Overview of Liquid Crystals and Liquid Crystal Polymers for Different Applications: A Review. Polymers (Basel) 2024; 16:2293. [PMID: 39204513 PMCID: PMC11359798 DOI: 10.3390/polym16162293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Liquid crystals have been extensively used in various applications, such as optoelectronic devices, biomedical applications, sensors and biosensors, and packaging, among others. Liquid crystal polymers are one type of liquid crystal material, combining their intrinsic properties with polymeric flexibility for advanced applications in displays and smart materials. For instance, liquid crystal polymers can serve as drug nanocarriers, forming cubic or hexagonal mesophases, which can be tailored for controlled drug release. Further applications of liquid crystals and liquid crystal polymers include the preparation of membranes for separation processes, such as wastewater treatment. Furthermore, these materials can be used as ion-conducting membranes for fuel cells or lithium batteries due to their broad types of mesophases. This review aims to provide an overall explanation and classification of liquid crystals and liquid crystal polymers. Furthermore, the great potential of these materials relies on their broad range of applications, which are determined by their unique properties. Moreover, this study provides the latest advances in liquid crystal polymer-based membranes and their applications, focusing especially on fuel cells. Moreover, future directions in the applications of various liquid crystals are highlighted.
Collapse
Affiliation(s)
- Jordi Guardià
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| | - José Antonio Reina
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| | - Marta Giamberini
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Xavier Montané
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain; (J.G.); (J.A.R.)
| |
Collapse
|
3
|
Gong W, Huang G, Zhou M, Fan C, Yuan Y, Zhang H. Synthesis and Properties of Room-Temperature Phosphorescent Liquid Crystal Copolymers with Linearly Polarized Luminescence Characteristic. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49701-49711. [PMID: 37846058 DOI: 10.1021/acsami.3c14313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Room-temperature phosphorescent (RTP) liquid crystal materials have garnered considerable attention because of their significant applications in organic light emitting diodes, polarized light emitting materials, and so forth. How to efficiently synthesize pure organic RTP liquid crystals and regulate their performance is of great significance. In this article, we propose a simple and feasible method to synthesize RTP liquid crystals and manipulate their properties through copolymerization. We constructed RTP liquid crystal copolymers by copolymerizing a phosphorescent monomer bearing biphenyl mesogen with a phosphorescent monomer bearing a dibenzofuran chromophore. All the synthesized copolymers show a liquid crystal property because of the introduction of biphenyl mesogen. Meanwhile, by changing the composition of copolymers, it is possible to regulate their RTP performance, including luminescence color and lifetime. As the content of the PMDFM0C component in copolymers increases, the phosphorescence lifetime gradually increases. For poly(MDFM0C(0.46)-co-MBi18C(0.54)), the phosphorescence lifetime can reach 463.0 ms. Moreover, the phosphorescence color of the PMDFM0C component in copolymers changes with the copolymer composition, which can induce variable room-temperature phosphorescence. In addition, when oriented, liquid crystal copolymer films can emit linearly polarized fluorescence and linearly polarized phosphorescence. The linearly polarized phosphorescence dichroic ratio and polarization ratio values of the oriented poly(MDFM0C(0.46)-co-MBi18C(0.54)) film are 3.33 and 0.50, respectively.
Collapse
Affiliation(s)
- Wei Gong
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Guiyan Huang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Mengdie Zhou
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Chunyan Fan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| |
Collapse
|
4
|
Zhao Z, Zhang L, Zhao Y, Li Y, Shi J, Zhi J, Dong Y. Helical Self-Assembly and Fe 3+ Detection of V-Shaped AIE-Active Chiral Tetraphenylbutadiene-Based Polyamides. Chemistry 2023; 29:e202301035. [PMID: 37200207 DOI: 10.1002/chem.202301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Chiral aggregation-induced emission (AIE) molecules have drawn attention for their helical self-assembly and special optical properties. The helical self-assembly of AIE-active chiral non-linear main-chain polymers can produce some desired optical features. In this work, a series of V-shaped chiral AIE-active polyamides P1-C3, P1-C6, P1-C12 and linear P2-C3, P2-C6, bearing n-propyl/hexyl/dodecyl side-chains, based on tetraphenylbutadiene (TPB), were prepared. All target main-chain polymers exhibit distinct AIE characteristics. The polymer P1-C6 with moderate length alkyl chains shows better AIE properties. The V-shaped main-chains and the chiral induction of (1R,2R)-(+)-1,2-cyclohexanediamine in each repeating unit promote the polymer chains display helical conformation, and multiple helical polymer chains induce nano-fibers helicity when the polymer chains aggregate and self-assemble in THF/H2 O mixtures. Simultaneously, the helical conformation polymer chains and helical nano-fibers cause P1-C6 produce strong circular dichroism (CD) signals with positive Cotton effect. Moreover, P1-C6 could also occur fluorescence quenching response to Fe3+ selectively with a low detection limit of 3.48 μmol/L.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Lulu Zhang
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yanji Li
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Junge Zhi
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| |
Collapse
|
5
|
Xu J, Wang J, Bakr OM, Hadjichristidis N. Controlling the Fluorescence Performance of AIE Polymers by Controlling the Polymer Microstructure. Angew Chem Int Ed Engl 2023; 62:e202217418. [PMID: 36652122 DOI: 10.1002/anie.202217418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Aggregation-induced emission (AIE) polymers with expected emission wavelength/color and fluorescence efficiency are valuable in applications. However, most AIE polymers exhibit irregular emission wavelength/color changes compared to the original AIE monomers. Here, we report the synthesis of AIE polymers with unchanged emission wavelength by ring-opening (co)polymerizations of 4-(triphenylethenyl)phenoxymethyloxirane (TPEO) and other epoxides or phthalic anhydride. The chemical structures/physical properties of all (co)polymers were characterized by NMR, SEC, MALDI-TOF, and DSC. The co-polyether microstructures were revealed by calculating the reactivity ratios and visualized by Monte Carlo simulation. The photoluminescence quantum yields of all the (co)polymers were determined in the solid state. We systematically correlated the fluorescence performance with molecular weights, crystallinity, monomer compositions, glass transition temperatures, side lengths, and flexibility/rigidity.
Collapse
Affiliation(s)
- Jiaxi Xu
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| | - Jiayi Wang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Osman M Bakr
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
6
|
Mu B, Ma T, Zhang Z, Hao X, Wang L, Wang J, Yan H, Tian W. Thermo-Induced Bathochromic Emission in Columnar Discotic Liquid Crystals Realized by Intramolecular Planarization. Chemistry 2023; 29:e202300320. [PMID: 36794471 DOI: 10.1002/chem.202300320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Most organic thermochromic fluorescent materials exhibit thermo-induced hypsochromic emission due to the formation of excimers in ordered molecular solids; however, it is still a challenge to endow them with bathochromic emission despite its significance in making up the field of thermochromism. Here, a thermo-induced bathochromic emission in columnar discotic liquid crystals is reported realized by intramolecular planarization of the mesogenic fluorophores. A three-armed discotic molecule of dialkylamino-tricyanotristyrylbenzene was synthesized, which preferred to twist out of the core plane to accommodate ordered molecular stacking in hexagonal columnar mesophases, giving rise to bright green monomer emission. However, intramolecular planarization of the mesogenic fluorophores occurred in isotropic liquid increasing the conjugation length, and as a result led to thermo-induced bathochromic emission from green to yellow light. This work reports a new concept in the thermochromic field and provides a novel strategy to achieve fluorescence tuning from intramolecular actions.
Collapse
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liang Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jingxia Wang
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxia Yan
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
7
|
Mu B, Zhang Z, Hao X, Ma T, Tian W. Positional Isomerism-Mediated Copolymerization Realizing the Continuous Luminescence Color-Tuning of Liquid-Crystalline Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Mu
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhelin Zhang
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiangnan Hao
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tianshu Ma
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wei Tian
- Shanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
8
|
Wang J, Wang T, Jiang Q, Zhang Y, Qiu Y, Wang H, Yin G, Liao Y, Xie X. Configuration-Dependent Liquid Crystal and Gel Behaviors of Tetraphenylethene-Containing Main-Chain Copolyesters. Macromol Rapid Commun 2022; 43:e2200154. [PMID: 35511696 DOI: 10.1002/marc.202200154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/16/2022] [Indexed: 11/07/2022]
Abstract
The construction of aggregation-induced emission-active (AIE-active) gelators with liquid crystal properties remains a challenge. Moreover, it is still unclear for the effect of AIE configuration on liquid crystal, gel and AIE behaviors in one system. Herein, two main-chain liquid crystalline copolyester gelators with a single configuration of AIEgen TPE, mesogen biphenyl and pendent amide groups have been synthesized through melt polycondensation. Both copolyesters display smectic phase, while E-P20 possesses a wider temperature range of liquid crystal and a narrower layer distance owing to the more serious nonlinear "defect" of Z-TPE than E-TPE units. In addition, E-P20 and Z-P20 can form AIE-active gels with the minimum gelation concentration (MGC) values of 10 wt% and 4 wt% in ethyl acetate mainly via hydrogen bond between the pendent amide groups, respectively. These AIE-active gels show potential applications in temperature sensor, information storage, and so on. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tian Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuping Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guochuan Yin
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yonggui Liao
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaolin Xie
- National Anti-counterfeit Engineering Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Ahumada G, Borkowska M. Fluorescent Polymers Conspectus. Polymers (Basel) 2022; 14:1118. [PMID: 35335449 PMCID: PMC8955759 DOI: 10.3390/polym14061118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The development of luminescent materials is critical to humankind. The Nobel Prizes awarded in 2008 and 2010 for research on the development of green fluorescent proteins and super-resolved fluorescence imaging are proof of this (2014). Fluorescent probes, smart polymer machines, fluorescent chemosensors, fluorescence molecular thermometers, fluorescent imaging, drug delivery carriers, and other applications make fluorescent polymers (FPs) exciting materials. Two major branches can be distinguished in the field: (1) macromolecules with fluorophores in their structure and (2) aggregation-induced emission (AIE) FPs. In the first, the polymer (which may be conjugated) contains a fluorophore, conferring photoluminescent properties to the final material, offering tunable structures, robust mechanical properties, and low detection limits in sensing applications when compared to small-molecule or inorganic luminescent materials. In the latter, AIE FPs use a novel mode of fluorescence dependent on the aggregation state. AIE FP intra- and intermolecular interactions confer synergistic effects, improving their properties and performance over small molecules aggregation-induced, emission-based fluorescent materials (AIEgens). Despite their outstanding advantages (over classic polymers) of high emission efficiency, signal amplification, good processability, and multiple functionalization, AIE polymers have received less attention. This review examines some of the most significant advances in the broad field of FPs over the last six years, concluding with a general outlook and discussion of future challenges to promote advancements in these promising materials that can serve as a springboard for future innovation in the field.
Collapse
Affiliation(s)
- Guillermo Ahumada
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Korea;
| | | |
Collapse
|