1
|
Luo H, Yang X, Ding Q, Sheng B, Deng J, Yan X, Wu Y, Chen H, Hao C, Yuan S, Zeng J, Zhou W. Tensile properties and deformation by different compatibilizers in bio-based polylactide/poly(4-hydroxybutyrate) blends. Int J Biol Macromol 2024; 281:136550. [PMID: 39426776 DOI: 10.1016/j.ijbiomac.2024.136550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/21/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Blending chemically synthesized poly(4-hydroxybutyrate) (P4HB) with polylactide (PLLA) can overcome PLLA's brittleness, offering fully biobased blends. However, due to low compatibility between PLLA and P4HB, the influence of compatibilizers on the morphology, structure and tensile deformation of PLLA/P4HB blends remains to be unresolved. This article introduces reactive poly(methyl methacrylate-co-styrene-glycidyl methacrylate) (MSG) and non-reactive polyformaldehyde (POM) compatibilizers to improve the compatibility between P4HB and PLLA, achieving the maximal elongation at break exceeding 300 % at 2 wt% MSG or 3 wt% POM. MSG inhibits PLLA crystallization, extending stress stability in the silver streak stage, while POM enhances crystallization, prolonging the strain-hardening stage. Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) analysis show that pristine PLLA forms voids before fracture, and PLLA/P4HB blends cavitate at the yield point and develop crazes in the silver streak stage. MSG effectively transmits stress and delays cavitation, extending the silver streak stage, whereas POM forms a microcrystalline network, lowering the energy barrier for stretching-induced recrystallization. These findings could provide theoretical guidelines on selecting compatibilizers for different PLLA based blends.
Collapse
Affiliation(s)
- Haoqi Luo
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiangyan Yang
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Qingyi Ding
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Bogang Sheng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Jing Deng
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Xiaofei Yan
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Yang Wu
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China
| | - Han Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Chaowei Hao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, 266042 Qingdao, PR China.
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204 Shanghai, PR China; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, PR China.
| | - Weihua Zhou
- Department of Polymer Materials and Engineering, School of Physics and Materials, Nanchang University, 330031 Nanchang, PR China.
| |
Collapse
|
2
|
Chen Y, Song X, Wang Y, Huang Y, Wang Y, Zhu C. The effect of Pluronic P123 on shape memory of cross-linked polyurethane/poly(l-lactide) biocomposite. Int J Biol Macromol 2024; 259:128788. [PMID: 38154706 DOI: 10.1016/j.ijbiomac.2023.128788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Polyurethane (PU) and poly(l-lactide) (PLLA) have attracted increasing attention in the development of shape memory polymers (SMPs) due to their good biocompatibility and degradability. Although Pluronic P123 can be used to tune polymeric surface hydrophilicity, its effect on SM performance is a mystery. In this study, a soluble cross-linked PU is synthesized as the switching phase and combined with PLLA and P123 to construct a hydrothermally responsive SM composite. The water contact angle of PU/PLLA/P123 decreases from 22.7° to 5.1° within 2 min. PU and P123 form the switching group, which enhances the SM behavior of the composite. The shape fixity (Rf) and shape recovery (Rr) of PU/PLLA/P123 are 94.4 % and 98 % in 55 °C water, respectively, and the shape recovery time is only 10 s. P123 plays the role of "turbine" in the SM process. PU/PLLA/P123 exhibits a balance between stiffness and elasticity, and good degradability. Furthermore, PU/PLLA/P123 is also biocompatible and beneficial to cell proliferation and growth. Therefore, it offers an alternative approach to developing hydrothermally responsive SM biocomposites based on P123, PU and PLLA for biomedical applications.
Collapse
Affiliation(s)
- Youhua Chen
- School of Chemical Engineering, Changchun University of Technology, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, China; Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China.
| | - Ying Wang
- School of Chemical Engineering, Changchun University of Technology, China
| | - Yuan Huang
- School of Chemical Engineering, Changchun University of Technology, China
| | - Yanhe Wang
- Jiangxi Center of Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, China
| | - Chuanming Zhu
- School of Chemical Engineering, Changchun University of Technology, China
| |
Collapse
|
3
|
Yang R, Cai C, Chen Z, Zou G, Li J. The effect of dynamic vulcanization on the morphology and biodegradability of super toughened poly(lactic acid)/unsaturated poly(ether-ester) blends. Int J Biol Macromol 2023; 253:126790. [PMID: 37703967 DOI: 10.1016/j.ijbiomac.2023.126790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Preparing a super-tough polylactic acid (PLA) material while maintaining its biodegradability is a significant challenge. This study synthesized a biodegradable unsaturated poly(butylene succinate-co-fumarate)-poly(ethylene glycol) multiblock copolymer (PBSFG) and dynamically vulcanized it with PLA to obtain super-tough blends. The PBSFG self-vulcanized and formed a crosslinked "hard-soft" core-shell rubber phase in the blending process, where the PBSF segment acted as the core and PEG as the shell. As a result, the elongation at break and notched Izod impact strength of PLA increased significantly from 3 % to 66 % and from 3.2 to 58.0 kJ/m2, respectively. Furthermore, adding a small amount of dicumyl peroxide (DCP) promoted dynamic vulcanization and improved the compatibility between PLA and PBSFG. With the addition of 0.03 % DCP, the elongation at break and notched Izod impact strength of PLA/PBSFG were further increased to 218 % and 88.9 kJ/m2, respectively. Meanwhile, the crystallization rate of PLA was enhanced by the addition of PBSFG and DCP. The PLA/PBSFG blends also degraded in a proteinase K Tris-HCl buffered buffer solution. Finally, fully biodegradable and super-tough PLA blends were achieved.
Collapse
Affiliation(s)
- Rong Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Chaoyi Cai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zhifan Chen
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Guoxiang Zou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jinchun Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
4
|
Fan Z, Gao J, Wu Y, Yin D, Chen S, Tu H, Wei T, Zhang C, Zhu H, Jin H. Highly Enhanced Mechanical, Thermal, and Crystallization Performance of PLA/PBS Composite by Glass Fiber Coupling Agent Modification. Polymers (Basel) 2023; 15:3164. [PMID: 37571058 PMCID: PMC10421074 DOI: 10.3390/polym15153164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
To improve the toughness and heat resistance of polylactic acid (PLA), polybutylene succinate (PBS) was sufficiently blended with PLA as the base matrix, and the glass fiber (GF) that was modified with 3-aminopropyltriethoxysilane (KF-GF) was added as the reinforcement. The results demonstrated a noteworthy boost in both mechanical and heat resistance properties when employing KH-GF, in comparison to pristine GF. When the content of KH-GF reached 20%, the tensile, flexural, and IZOD impact strength of the composites were 65.53 MPa, 83.43 MPa, and 7.45 kJ/m2, respectively, which were improved by 123%, 107%, and 189% compared to the base matrix, respectively. This enhancement was primarily attributed to the stronger interfacial adhesion between KH-GF and the PLA/PBS matrix. Furthermore, the Vicat softening temperature of the composites reached 128.7 °C, which was a result of increased crystallinity. In summary, the incorporation of KH-GF into PLA/PBS composites resulted in notable enhancements in their mechanical properties, crystallinity, and thermal characteristics. The high performance KH-GF-reinforced PLA/PBS composite showed a broad application potential in the field of biodegradable packaging, biodegradable textiles, and biodegradable plastic bags.
Collapse
Affiliation(s)
- Zhiqiang Fan
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
| | - Junchang Gao
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
| | - Yadong Wu
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
| | - Dewu Yin
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
- Cangnan Research Institute, Wenzhou University, Wenzhou 325035, China
| | - Shunxing Chen
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
| | - Hua Tu
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
| | - Tiantian Wei
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
| | - Chaoran Zhang
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
| | - Haoxiang Zhu
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
| | - Huile Jin
- Key Laboratory of Leather of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China; (Z.F.); (H.J.)
- Institute of New Materials and Industrial Technology, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Fan T, Qin J, Li J, Liu J, Wang Y, Liu Q, Fan T, Liu F. Fabrication and evaluation of 3D printed poly(l-lactide) copolymer scaffolds for bone tissue engineering. Int J Biol Macromol 2023:125525. [PMID: 37356690 DOI: 10.1016/j.ijbiomac.2023.125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
The application of poly(L-lactic acid) (PLLA) in tissue engineering is limited due to its brittleness and uncontrollable degradation rate. In this study, the flexible p-dioxanone (PDO) and highly reactive glycolide (GA) units were introduced into PLLA segments by chemical modification to prepare poly(l-lactide-ran-p-dioxanone-ran-glycolide) (PLPG) copolymers. The copolymers were then processed into the PLPG scaffold by a 3D printing technology. The physicochemical properties of the PLPG copolymers were studied by NMR, DSC, XRD, GPC, and SEM. Furthermore, the mechanical properties, degradation properties, and biocompatibility of the PLPG scaffolds were also studied. The results showed that introducing PDO and GA units disrupted the regularity of PLLA, decreasing the crystallinity of the PLPG copolymers. However, introducing PDO and GA units could effectively improve the mechanical and degradation properties of the PLLA scaffolds. In vitro cell culture experiments indicated that the PLPG scaffolds supported proliferation, growth, and differentiation of MC3T3-E1 cells. The PLPG scaffolds reported herein, with controllable degradation rates and mechanical performance, may find applications in bone tissue engineering.
Collapse
Affiliation(s)
- Tiantang Fan
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China.
| | - Jingwen Qin
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Jiafeng Li
- China Coal Research Institute, Beijing 100013, PR China
| | - Jifa Liu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Ying Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Qing Liu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, PR China
| | - Tianyun Fan
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan 523000, PR China.
| | - Fengzhen Liu
- Liaocheng People's Hospital, Liaocheng Hospital affiliated to Shandong First Medical University, Liaocheng 252000, PR China.
| |
Collapse
|
6
|
Jia DZ, Ma GQ, Liu Q, Zhang J, Li JQ, Lin H, Li XJ, Zhong GJ, Li ZM. Extensional Stress-Induced Ductility of Poly(l-lactide) Films: Role of the Entangled Network in Amorphous Regions. Biomacromolecules 2023. [PMID: 37276461 DOI: 10.1021/acs.biomac.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The relationship between the density of the entangled amorphous network and the ductility of oriented poly(l-lactide) (PLLA) films is explored based on the preferential hydrolysis of the amorphous regions in phosphate buffer solution (PBS). PLLA films with a balance of ductility and stiffness have been prepared by the "casting-annealing stretching" based on mechanical rejuvenation, and the structural evolution and mechanical properties at different hydrolysis durations have been identified. Various stages are found during the transition of ductility to brittleness for hydrolyzed PLLA films. First, the elongation at break for hydrolyzed PLLA films remains unchanged in the first stage of hydrolysis and then gradually decreases. Eventually, the films turn to be brittle in the third stage. The strain-hardening modulus (GR) of the hydrolyzed films is utilized to reflect the density of the entangled amorphous network, and a gradual decrease of GR with hydrolysis time indicates the decisive role of the amorphous entanglement network in the mechanical rejuvenation-induced ductility of PLLA. The quantitative relationship between the entangled amorphous network and the stress-induced ductility of PLLA films is revealed. The dependence of deformation behavior on entangled amorphous network density is closely correlated to activated primary structure during deformation. The intact chain network plays a crucial role in sufficiently activating the primary structure to yield and disentanglement during the subsequent necking. These findings could advance the understanding of the PLLA's ductility induced by mechanical rejuvenation and offer guidance for awakening the intrinsic toughness of PLLA.
Collapse
Affiliation(s)
- De-Zhuang Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Guo-Qi Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qian Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jia-Qi Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xu-Juan Li
- School of Environment and Resource, Southwest University of Science and Technology, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Sichuan Engineering Lab of Non-Metallic Mineral Powder Modification & High-Value Utilization, Mianyang 621010, China
| | - Gan-Ji Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Cai Y, Liu S, Fang C, Liu Z, He Y, Qu JP. Strengthening-toughening pure poly(lactic acid) with ultra-transparency through increasing mesophase promoted by elongational flow field. Int J Biol Macromol 2023:125091. [PMID: 37247709 DOI: 10.1016/j.ijbiomac.2023.125091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Poly(lactic acid) (PLA), as a biodegradable material, finds wide applications in packaging, automotive, and biological industries. However, achieving high strength, toughness, ultra-transparency, and heat resistance simultaneously in pure PLA through continuous one-step manufacturing remains a significant challenge. In this study, we addressed this challenge by utilizing the eccentric rotor extruder (ERE) in combination with cooling rolls to manufacture PLA sheets with outstanding mechanical performance. The ERE's elongational flow field combined with the cooling roller's weak stretching action induced orientation in the PLA molecular chains and promoted the formation of more mesophase, significantly improving mechanical properties. When the extrusion-stretch ratio (λ) value was 3.5, the tensile yield strength, Young's modulus, and elongation at break of ERE-fabricated samples ER-3.5 reached 86.2 MPa, 1777 MPa, and 57.9 %, respectively. Compared to the SE-3.5 samples manufactured with traditional methods, the increases were 38.8 %, 25.8 %, and 9.4 times, respectively. Additionally, the ERE manufactured samples maintained ultra-transparency and high heat resistance, making them suitable for food packaging, biomedicine, and other related fields. This methodology provides an efficient industrial-scale approach for manufacturing neat, biodegradable PLA with outstanding mechanical performance and ultra-transparency.
Collapse
Affiliation(s)
- Yu Cai
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shuai Liu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Cong Fang
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Zhihua Liu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yue He
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Jin-Ping Qu
- National Engineering Research Center of Novel Equipment for Polymer Processing, South China University of Technology, Guangzhou 510640, PR China; Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, PR China; School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
8
|
Wei Y, Wang Z, Zhou S, Li Z. Toughened transparent poly(L-lactic acid)/poly(D-lactide)-b-poly(butadiene)-b-poly(D-lactide) blended film with balanced strength. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Ronkay F, Molnár B, Szabó E, Marosi G, Bocz K. Water boosts reactive toughening of PET. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Toughening and Heat-Resistant Modification of Degradable PLA/PBS-Based Composites by Using Glass Fiber/Silicon Dioxide Hybrid Fillers. Polymers (Basel) 2022; 14:polym14163237. [PMID: 36015493 PMCID: PMC9412549 DOI: 10.3390/polym14163237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
In this paper, to enhance the toughness and heat resistance properties of polylactic acid (PLA)/polybutylene succinate (PBS) composites, the PLA/PBS matrix was modified by different glass fiber (GF), GF/SiO2, and GF/(Polyaluminium chloride) PAC fillers. Additionally, the effect of filler type, filler content, components interaction and composite structure on the mechanical and thermal properties of the PLA/PBS composites was researched. The results showed that the addition of GF, GF/SiO2 and GF/PAC make the PLA/PBS composites appear significantly higher mechanical properties compared with the pristine PLA/PBS composite. Among the different inorganic fillers, the 10%GF/1%SiO2 fillers showed excellent strengthening, toughening and heat resistant effects. Compared with the pristine PLA/PBS matrix, the tensile strength, elastic modulus, flexural strength, flexural modulus and Izod impact strength improved by 36.28%, 70.74%, 67.95%, 66.61% and 135.68%, respectively. Considering the above, when the weight loss rate was 50%, the thermal decomposition temperature of the 10%GF/1%SiO2 modified PLA/PBS composites was the highest 412.83 °C and its Vicat softening point was up to 116.8 °C. In a word, the 10%GF/1%SiO2 reinforced PLA/PBS composites exhibit excellent mechanical and thermal properties, which broadens the application of biodegradable materials in specific scenarios.
Collapse
|
11
|
Qu Y, Chen Y, Ling X, Wu J, Hong J, Wang H, Li Y. Reactive Micro-Crosslinked Elastomer for Supertoughened Polylactide. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingding Qu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Yihang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Xiayan Ling
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Jiali Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Jiangtao Hong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| |
Collapse
|