1
|
Wan L, Lin D, Liu J, Xu Z, Xu Q, Zhen Y, Pang M, Wang B. Interfacial and Vacancy Engineering on 3D-Interlocked Anode Catalyst Layer for Achieving Ultralow Voltage in Anion Exchange Membrane Water Electrolyzer. ACS NANO 2024; 18:22901-22916. [PMID: 39137066 DOI: 10.1021/acsnano.4c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Developing a high-efficiency and stable anode catalyst layer (CL) is crucial for promoting the practical applications of anion exchange membrane (AEM) water electrolyzers. Herein, a hierarchical nanosheet array composed of oxygen vacancy-enriched CoCrOx nanosheets and dispersed FeNi layered double hydroxide (LDH) is proposed to regulate the electronic structure and increase the electrical conductivity for improving the intrinsic activity of the oxygen evolution reaction (OER). The CoCrOx/NiFe LDH electrodes require an overpotential of 205 mV to achieve a current density of 100 mA cm-2, and they exhibit long-term stability at 1000 mA cm-2 over 7000 h. Notably, a breakthrough strategy is introduced in membrane electrode assembly (MEA) fabrication by transferring CoCrOx/NiFe LDH to the surface of an AEM, forming a 3D-interlocked anode CL, significantly reducing the overall cell resistance and enhancing the liquid/gas mass transfer. In AEM water electrolysis, it exhibits an ultralow cell voltage of 1.55 Vcell to achieve a current density of 1.0 A cm-2 in 1 M KOH, outperforming the state-of-the-art Pt/C//IrO2. This work provides a valuable approach to designing high-efficiency electrocatalysts at the single-cell level for advanced alkaline water electrolysis technologies.
Collapse
Affiliation(s)
- Lei Wan
- Department of Chemical Engineering, Tsinghua University, Beijing, China, 100084
| | - Dongcheng Lin
- Department of Chemical Engineering, Tsinghua University, Beijing, China, 100084
| | - Jing Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China, 100084
| | - Ziang Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, China, 100084
| | - Qin Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, China, 100084
| | - Yihan Zhen
- Department of Chemical Engineering, Tsinghua University, Beijing, China, 100084
| | - Maobin Pang
- Department of Chemical Engineering, Tsinghua University, Beijing, China, 100084
| | - Baoguo Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China, 100084
| |
Collapse
|
2
|
Du W, Liu L, Yin L, Li B, Ma Y, Guo X, Zang HY, Zhang N, Zhu G. Ultrathin Free-Standing Porous Aromatic Framework Membranes for Efficient Anion Transport. Angew Chem Int Ed Engl 2024; 63:e202402943. [PMID: 38529715 DOI: 10.1002/anie.202402943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Porous aromatic frameworks (PAFs) show promising potential in anionic conduction due to their high stability and customizable functionality. However, the insolubility of most PAFs presents a significant challenge in their processing into membranes and subsequent applications. In this study, continuous PAF membranes with adjustable thickness were successfully created using liquid-solid interfacial polymerization. The rigid backbone and the stable C-C coupling endow PAF membrane with superior chemical and dimensional stabilities over most conventional polymer membranes. Different quaternary ammonium functionalities were anchored to the backbone through flexible alkyl chains with tunable length. The optimal PAF membrane exhibited an OH- conductivity of 356.6 mS ⋅ cm-1 at 80 °C and 98 % relative humidity. Additionally, the PAF membrane exhibited outstanding alkaline stability, retaining 95 % of its OH- conductivity after 1000 hours in 1 M NaOH. To the best of our knowledge, this is the first application of PAF materials in anion exchange membranes, achieving the highest OH- conductivity and exceptional chemical/dimensional stability. This work provides the possibility for the potential of PAF materials in anionic conductive membranes.
Collapse
Affiliation(s)
- Wenguang Du
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Liying Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Bo Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yu Ma
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoyu Guo
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
3
|
Chen N, Gui B, Yang B, Deng C, Liang Y, Zhang F, Li B, Sun W, Wu F, Chen R. LiPF 6 Induces Phosphorization of Garnet-Type Solid-State Electrolyte for Stable Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305576. [PMID: 37821400 DOI: 10.1002/smll.202305576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Garnet solid electrolyte Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) is an excellent inorganic ceramic-type solid electrolyte; however, the presence of Li2 CO3 impurities on its surface hinders Li-ion transport and increases the interface impedance. In contrast to traditional methods of mechanical polishing, acid corrosion, and high-temperature reduction for removing Li2 CO3 , herein, a straightforward "waste-to-treasure" strategy is proposed to transform Li2 CO3 into Li3 PO4 and LiF in LiPF6 solution under 60 °C. It is found that the formation of Li3 PO4 during LLZTO pretreatment facilitates rapid Li-ion transport and enhances ionic conductivity, and the LLZTO/PAN composite polymer electrolyte shows the highest Li-ion transference number of 0.63. Additionally, the dense LiF layer serves to safeguard the internal garnet solid electrolyte against solvent decomposition-induced chemical adsorption. Symmetric Li/Li cells assembled with treated LLZTO/PAN composite electrolyte exhibit a critical current density of 1.1 mA cm-2 and a long lifespan of up to 700 h at a current density of 0.2 mA cm-2 . The Li/LiFePO4 solid-state cells demonstrate stable cycling performances for 141 mAh g-1 at 0.5 C, with capacity retention of 93.6% after 190 cycles. This work presents a novel approach to converting waste into valuable resources, offering the advantages of simple processes, and minimal side reactions.
Collapse
Affiliation(s)
- Nan Chen
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
| | - Boshun Gui
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Binbin Yang
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenglong Deng
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yaohui Liang
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fengling Zhang
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bohua Li
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wen Sun
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wu
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
4
|
Jin Z, Zou X, Xu G, Sun Z, Yan F. Semi-Interpenetrating Network Anion Exchange Membranes by Thiol-Ene Coupling Reaction for Alkaline Fuel Cells and Water Electrolyzers. Molecules 2023; 28:5470. [PMID: 37513341 PMCID: PMC10385286 DOI: 10.3390/molecules28145470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, a thiol-ene coupling reaction was employed to prepare the semi-interpenetrating polymer network AEMs. The obtained QP-1/2 membrane exhibits high hydroxide conductivity (162.5 mS cm-1 at 80 °C) with a relatively lower swelling ratio, demonstrating its mechanical strength of 42 MPa. This membrane is noteworthy for its improved alkaline stability, as the semi-interpenetrating network effectively limits the attack of hydroxide. Even after being treated in 2 M NaOH at 80 °C for 600 h, 82.5% of the hydroxide conductivity is maintained. The H2/O2 fuel cell with QP-1/2 membrane displays a peak power density of 521 mW cm-2. Alkaline water electrolyzers based on QP-1/2 membrane demonstrated a current density of 1460 mA cm-2 at a cell voltage of 2.00 V using NiCoFe catalysts in the anode. All the results demonstrate that a semi-interpenetrating structure is a promising way to enhance the mechanical property, ionic conductivity, and alkaline stability of AEMs for the application of alkaline fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Zhiyu Jin
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Guodong Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhe Sun
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Semi-interpenetrating anion exchange membranes using hydrophobic microporous linear poly(ether ketone). J Colloid Interface Sci 2023; 634:110-120. [PMID: 36535151 DOI: 10.1016/j.jcis.2022.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
In order to realise high ionic conductivity and improved chemical stability, a series of anion exchange membranes (AEMs) with semi-interpenetrating polymer network (sIPN) has been prepared via the incorporation of crosslinked poly(biphenyl N-methylpiperidine) (PBP) and spirobisindane-based intrinsically microporous poly(ether ketone) (PEK-SBI). The formation of phase separated structures as a result of the incompatibility between the hydrophilic PBP network and the hydrophobic PEK-SBI segment, has successfully promoted the hydroxide ion conductivity of AEMs. A swelling ratio (SR) as low as 12.2 % at 80 °C was recorded for the sIPN containing hydrophobic PEK-SBI as the linear polymer and crosslinked structure with a mass ratio of PBP to PEK-SBI of 90/10 (sIPN-90/10(PEK-SBI)). The sIPN-90/10(PEK-SBI) AEM achieved the highest hydroxide ion conductivity of 122.4 mS cm-1 at 80 °C and a recorded ion exchange capacity (IEC) of 2.26 meq g-1. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) clearly revealed the improved phase separation structure of sIPN-90/10(PEK-SBI). N2 adsorption isotherm indicated that the Brunauer-Emmett-Teller (BET) surface area of the AEMs increased with the increase of microporous PEK-SBI content. Interestingly, the sIPN-90/10(PEK-SBI) AEM showed good alkaline stability for being able to maintain a conductivity of 94.7 % despite being soaked in a 1 M sodium hydroxide solution at 80 °C for 30 days. Meanwhile, a peak power density of 481 mW cm-2 can be achieved by the hydrogen/oxygen single cell using sIPN-90/10(PEK-SBI) as the AEM.
Collapse
|
6
|
Tang J, Xu X, Tang T, Zhong Y, Shao Z. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. SMALL METHODS 2022; 6:e2201099. [PMID: 36251791 DOI: 10.1002/smtd.202201099] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Development of cost-effective water splitting technology that allows low-overpotential operation at high current density with non-precious catalysts is the key for large-scale hydrogen production. Herein, it is demonstrated that the versatile perovskite-based oxides, usually applied for operating at low current density and room temperature in alkaline solution, can be developed into low-cost, highly active and durable electrocatalysts for operating at high current densities in a zero-gap anion exchange membrane electrolyzer cell (AEMEC). The composite perovskite with mixed phases of Ruddlesden-Popper and single perovskite is applied as the anode in AEMEC and exhibits highly promising performance with an overall water-splitting current density of 2.01 A cm-2 at a cell voltage of only 2.00 V at 60 °C with stable performance. The elevated temperature to promote anion diffusion in membrane boosts oxygen evolution kinetics by enhancing lattice-oxygen participation. The bifunctionality of perovskites further promises the more cost-effective symmetrical AEMEC configuration, and a primary cell with the composite perovskite as both electrodes delivers 3.00 A cm-2 at a cell voltage of only 2.42 V. This work greatly expands the use of perovskites as robust electrocatalysts for industrial water splitting at high current density with great practical application merit.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Tony Tang
- Blackstone Minerals Limited, Perth, WA, 6005, Australia
| | - Yijun Zhong
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
7
|
Zhao Z, Zhang M, Du W, Xiao Y, Yang Z, Dong D, Zhang X, Fan M. Strong and Flexible High-Performance Anion Exchange Membranes with Long-Distance Interconnected Ion Transport Channels for Alkaline Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38132-38143. [PMID: 35971597 DOI: 10.1021/acsami.2c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anion exchange membrane fuel cells (AEMFCs), which operate on a variety of green fuels, can achieve high power without emitting greenhouse gases. However, the lack of high ionic conductivity and long-term durability of anion-exchange membranes (AEMs) as their key components is a major obstacle hindering the commercial application of AEMFCs. Here, a series of homogeneous semi-interpenetrating network (semi-IPN) AEMs formed by cross-linking a copolymer of styrene (St) and 4-vinylbenzyl chloride (VBC) with branched polyethylenimine (BPEI) were designed. The pure carbon copolymer skeleton without sulfone/ether bonds accompanied by the semi-IPN endows the AEMs with excellent chemical stability. Moreover, the cross-linking effect of flexible BPEI chains is supposed to promote the "strong-flexible" mechanical properties, while the presence of multiquaternary ammonium groups can boost the formation of microphase separation, thereby enhancing the ionic conductivity of these AEMs. Consequently, the optimized (S1V1)3Q AEM exhibits an excellent hydroxide conductivity of 106 mS cm-1 at 80 °C, as well as more than 81% residual conductivity after soaking in 1 M NaOH at 60 °C for 720 h. Furthermore, the H2/O2 fuel cell assembled with (S1V1)3Q AEM delivers a peak power density of 150.2 mW cm-2 at 60 °C and 40% relative humidity. All results indicate that the approach of combining a pure carbon backbone polymer with a semi-IPN structure may be a viable strategy for fabricating AEMs that can be used in AEMFCs for long-term applications.
Collapse
Affiliation(s)
- Zhixin Zhao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minghua Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wenhao Du
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yafei Xiao
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhaojie Yang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Dawei Dong
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xi Zhang
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minmin Fan
- Polymer Research Institute, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|