1
|
Li T, Huang L, Guo C, Ren J, Chen X, Ke Y, Xun Z, Hu W, Qi Y, Wang H, Gong Z, Liang XJ, Xue X. Massage-Mimicking Nanosheets Mechanically Reorganize Inter-organelle Contacts to Restore Mitochondrial Functions in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413376. [PMID: 40223359 DOI: 10.1002/advs.202413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Parkinson's disease (PD) is exacerbated by dysfunction of inter-organelle contact, which depends on cellular responses to the mechanical microenvironment and can be regulated by external mechanical forces. Delivering dynamic mechanical forces to neural cells proves challenging due to the skull. Inspired by the effects of massage; here PEGylated black phosphorus nanosheets (PEG-BPNS), known for their excellent biocompatibility, biodegradability, specific surface area, mechanical strength, and flexibility, are introduced, which are capable of adhering to neural cell membrane and generating mechanical stimulation with their lateral size of 200 nm, exhibiting therapeutic potential in a 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine-induced PD mouse model by regulating inter-organelle contacts. Specifically, it is found that 200 nm PEG-BPNS, acting as "NanoMassage," significantly increase plasma membrane tension, as evidenced by fluorescent lipid tension reporter fluorescence lifetime analysis. This mechanical force modulates actin reorganization, subsequently regulating the contacts between actin, mitochondria, and endoplasmic reticulum, further controlling mitochondrial fission and mitigating mitochondrial dysfunction in PD, exhibiting therapeutic efficacy via intranasal administration. These findings provide a noninvasive strategy for applying mechanical stimulation to deep brain areas and elucidate the mechanism of NanoMassage mediating inter-organelle contacts, suggesting the rational design of "NanoMassage" to remodel inter-organelle communications in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Chenxiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Jing Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yachu Ke
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Wenzhuo Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, P. R. China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Tolba SA, Arshad A, Ash T, Xia W. Unraveling Polymer-Water Interaction: Ab Initio Insights into Neutral Polymer Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6065-6073. [PMID: 40025721 DOI: 10.1021/acs.langmuir.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The prevention of ice formation and accumulation on solid surfaces presents a significant challenge across various engineering and technological domains. Recent advancements in aqueous self-lubricating coatings have garnered considerable attention due to their promising anti-icing performance. These coatings effectively reduce ice formation, offering potential solutions for various applications. Our study focuses on the hydration of neutral polymers, providing significant insights into water-polymer interactions at the molecular level. We employ density functional theory (DFT) to investigate the hydration behavior of four representative neutral polymers: poly(ethylene glycol) (PEG), linear polyglycerol (linPG), polyvinylpyrrolidone (PVP), and polyethylene (PE), each selected for their distinct properties and hydrophilicity/hydrophobicity. A comprehensive bond analysis using crystal orbital hamilton populations (COHP) reveals strong hydrogen bonding between the water molecules and the oxygen atoms of the hydroxyl group in hydrophilic polymers. Polymers with diverse functional groups exhibit pronounced interactions with water molecules, particularly hydrophilic moieties, which show strong affinity toward water molecules. In contrast, polymers lacking hydrophilic functionalities exhibit significantly reduced interactions with water molecules. This bonding characterization is further supported by electron partial density of states (PDOS), Bader charge analysis, and energy calculations, which collectively elucidate the physicochemical nature of the water-polymer interactions. A detailed understanding of molecular-level interactions opens new avenues for tailoring polymer design and hydration behaviors to achieve enhanced anti-icing performance.
Collapse
Affiliation(s)
- Sara A Tolba
- Materials and Nanotechnology, North Dakota State University, Fargo, North Dakota 58108, United States
- Center for Computationally Assisted Science and Technology, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Amara Arshad
- Materials and Nanotechnology, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tamalika Ash
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenjie Xia
- Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Zhang S, Fang M, He J, Ma L, Miao X, Li P, Yu S, Cai W. How specific ion effects influence the mechanical behaviors of amide macromolecules? A cross-scale study. RSC Adv 2024; 14:25507-25515. [PMID: 39139238 PMCID: PMC11321207 DOI: 10.1039/d4ra04360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The mechanisms of specific ion effects on the properties of amide macromolecules is essential to understanding the evolution of life. Because most biological macromolecules contain both complex hydrophilic and hydrophobic structures, it is challenging to accurately identify the contributions of molecular structure to macroscopic behaviors. Herein, we investigated the influence of specific ion effects on the mechanical behaviors of poly(N-isopropylacrylamide) and neutral polyacrylamide (i.e., PNIPAM and NPAM), through a cross-scale study that includes single-molecule force spectroscopy, molecular dynamics simulation and macro mechanical method. The results indicate that the molecular conformation can be markedly influenced by the hydrophilicity (or hydrophobicity) of both macromolecule chain and ions. An extended chain conformation can be obtained when the side groups and ions are relatively hydrophilic, which can also increase the elasticity of a macromolecule chain and film materials. The relatively hydrophobic components promote the collapse of macromolecule chains and reduce the molecular elasticity. It is believed that the hydrogen bonding intensity between a macromolecule chain and aquated ions controls the chain conformation and the elasticity of molecules and films. This study is not only helpful for understanding the self-assembly mechanism of organisms but also provides a way to associate the molecular properties with the macroscopic performance of materials.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Mengjia Fang
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| | - Junjun He
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Lina Ma
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University Hangzhou 310024 Zhejiang Province China
| | - Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences) Heze 274000 China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Wanhao Cai
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| |
Collapse
|
4
|
Zhang S, Ji Y, He Y, Dong J, Li H, Yu S. Effect of Environmental pH on the Mechanics of Chitin and Chitosan: A Single-Molecule Study. Polymers (Basel) 2024; 16:995. [PMID: 38611253 PMCID: PMC11014069 DOI: 10.3390/polym16070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Chitin and chitosan are important structural macromolecules for most fungi and marine crustaceans. The functions and application areas of the two molecules are also adjacent beyond their similar molecular structure, such as tissue engineering and food safety where solution systems are involved. However, the elasticities of chitin and chitosan in solution lack comparison at the molecular level. In this study, the single-molecule elasticities of chitin and chitosan in different solutions are investigated via atomic force microscope (AFM) based single-molecule spectroscopy (SMFS). The results manifest that the two macromolecules share the similar inherent elasticity in DOSM due to their same chain backbone. However, obvious elastic deviations can be observed in aqueous conditions. Especially, a lower pH value (acid environment) is helpful to increase the elasticity of both chitin and chitosan. On the contrary, the tendency of elastic variation of chitin and chitosan in a larger pH value (alkaline environment) shows obvious diversity, which is mainly determined by the side groups. This basic study may produce enlightenment for the design of intelligent chitin and chitosan food packaging and biomedical materials.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (Y.J.); (Y.H.); (J.D.); (H.L.)
| | | | | | | | | | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (Y.J.); (Y.H.); (J.D.); (H.L.)
| |
Collapse
|
5
|
Yu M, Jiang C, Lai B, Zhang K. Exploring Novel Sensor Design Ideas through Concentration-Induced Conformational Changes in PEG Single Chains. SENSORS (BASEL, SWITZERLAND) 2024; 24:883. [PMID: 38339600 PMCID: PMC10856974 DOI: 10.3390/s24030883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Polyethylene glycol (PEG) is an artificial polymer with good biocompatibility and a low cost, which has a wide range of applications. In this study, the dynamic response of PEG single chains to different ion concentrations was investigated from a microscopic point of view based on single-molecule force spectroscopy, revealing unique interactions that go beyond the traditional sensor-design paradigm. Under low concentrations of potassium chloride, PEG single chains exhibit a gradual reduction in rigidity, while, conversely, high concentrations induce a progressive increase in rigidity. This dichotomy serves as the cornerstone for a profound understanding of PEG conformational dynamics under diverse ion environments. Capitalizing on the remarkable sensitivity of PEG single chains to ion concentration shifts, we introduce innovative sensor-design ideas. Rooted in the adaptive nature of PEG single chains, these sensor designs extend beyond the traditional applications, promising advancements in environmental monitoring, healthcare, and materials science.
Collapse
Affiliation(s)
- Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (M.Y.); (C.J.); (B.L.)
- Yibin Industrial Technology Research Institute, Sichuan University, Yibin 644000, China
| | - Chong Jiang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (M.Y.); (C.J.); (B.L.)
- Yibin Industrial Technology Research Institute, Sichuan University, Yibin 644000, China
| | - Bing Lai
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (M.Y.); (C.J.); (B.L.)
- Yibin Industrial Technology Research Institute, Sichuan University, Yibin 644000, China
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China; (M.Y.); (C.J.); (B.L.)
- Yibin Industrial Technology Research Institute, Sichuan University, Yibin 644000, China
| |
Collapse
|
6
|
Keklikian A, de Barros NR, Rashad A, Chen Y, Tan J, Sheng R, Sun D, Liu H, Thankam FG. Chitosan-Polyethylene Glycol Inspired Polyelectrolyte Complex Hydrogel Templates Favoring NEO-Tissue Formation for Cardiac Tissue Engineering. Gels 2024; 10:46. [PMID: 38247769 PMCID: PMC10815274 DOI: 10.3390/gels10010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration. Chitosan-PEG (CP), gelatin-chitosan-PEG (GCP), hyaluronic acid-chitosan-PEG (HACP), and combined CP (CoCP) polyelectrolyte hydrogels were engineered by solvent casting and assessed for physiochemical, thermal, electrical, biodegradable, mechanical, and biological properties. The CP, GCP, HACP, and CoCP hydrogels exhibited excellent porosity (4.24 ± 0.18, 13.089 ± 1.13, 12.53 ± 1.30 and 15.88 ± 1.10 for CP, GCP, HACP and CoCP, respectively), water profile, mechanical strength, and amphiphilicity suitable for cardiac tissue engineering. The hydrogels were hemocompatible as evident from the negligible hemolysis and RBC aggregation and increased adsorption of plasma albumin. The hydrogels were cytocompatible as evident from the increased viability by MTT (>94% for all the four hydrogels) assay and direct contact assay. Also, the hydrogels supported the adhesion, growth, spreading, and proliferation of H9c2 cells as unveiled by rhodamine staining. The hydrogels promoted neo-tissue formation that was proven using rat and swine myocardial tissue explant culture. Compared to GCP and CoCP, CP and HACP were superior owing to the cell viability, hemocompatibility, and conductance, resulting in the highest degree of cytoskeletal organization and neo-tissue formation. The physiochemical and biological performance of these hydrogels supported neo-cardiac tissue formation. Overall, the CP, GCP, HACP, and CoCP hydrogel systems promise novel translational opportunities in regenerative cardiology.
Collapse
Affiliation(s)
- Angelo Keklikian
- Department of Translational Research, College of Osteopathic Medicine of the Pacific and Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (N.R.d.B.); (A.R.)
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (N.R.d.B.); (A.R.)
| | - Yiqing Chen
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Jinrui Tan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Ruoyu Sheng
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Dongwei Sun
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Finosh G. Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific and Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
7
|
Li D, Song Y, Li D. Surface charging and electrophoretic behavior of conductive polymer micro-droplets in conductive polymer liquid solutions. Analyst 2023; 148:6315-6324. [PMID: 37947009 DOI: 10.1039/d3an01371e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
This study investigates the surface charging and electrophoretic motion of polyethylene glycol-rich (PEG-rich) micro-droplets in dextran-rich solutions or dextran-rich micro-droplets in PEG-rich solutions. The electrophoretic velocities of the droplets were measured in a centimeter-sized chamber under an optical microscope. It was found that the direction of electrophoretic motion of both the PEG-rich droplets and dextran-rich droplets is opposite to the applied electric field, meaning that both the PEG-rich droplets and dextran-rich droplets are negatively charged. The electrophoretic velocity is independent of droplet size but proportional to the electric field strength. Increasing the NaCl concentration reduces the electrophoretic velocity of PEG-rich droplets and increases it for dextran-rich droplets, suggesting different surface charge changes due to ion affinity. The charge densities and velocities are affected by the PEG and dextran mass fractions. Physical models for droplet surface charging under different conditions were proposed to explain the experimental results.
Collapse
Affiliation(s)
- Deyu Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
8
|
Lian H, Zhang W, Zou R, Gu S, Kuang R, Zhu Y, Zhang X, Ma CG, Wang J, Li Y. Aqueous-Based Inorganic Colloidal Halide Perovskites Customizing Liquid Scintillators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304743. [PMID: 37722107 DOI: 10.1002/adma.202304743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/02/2023] [Indexed: 09/20/2023]
Abstract
Compared to solid scintillators and organic liquid scintillators, aqueous-based liquid scintillators (AbLS) have more superiority in highly flexible scalability, yet are now limited by their low light yield (≈100 photons MeV-1 ). Here, aqueous-based inorganic colloidal halide perovskites with high photoluminescence quantum yield (PLQY) of three primary color luminescence up to 88.1% (red), 96% (green), and 81.8% (blue) are respectively synthesized, and a new generation of colloidal perovskite-mediated AbLS (PAbLS) with light yield increased in comparison with the commercial scintillator AbLS is fabricated. This paper exhibits that the excellent PLQY and colloidal dispersion of halide perovskites benefit from poly(ethylene glycol) modification and this modification ensures the vacancy inhibition and formation of defect-free surfaces in an aqueous solution. Moreover, their high luminescent emission can be maintained for 100 days at low temperatures, and such modification also promises the heat-to-cold customization of operating temperature even in ice below 0 °C. Finally, depending on the light yield of around 3058 and 8037 photons MeV-1 at room temperature and low temperature, PAbLS with shape/size scalability exhibit their robust radiation hardness (dose rate as high as 23 mGy s-1 ) and conceptual application potential in high-energy ray radiation detection from every angle of 360°.
Collapse
Affiliation(s)
- Huiwang Lian
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenxia Zhang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Rui Zou
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Simin Gu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Rongyi Kuang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yunfei Zhu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinyue Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, China
- Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| | - Chong-Geng Ma
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yang Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, China
- Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
9
|
Zhang S, Zheng H, Miao X, Zhang G, Song Y, Kang X, Qian L. Surprising Nanomechanical and Conformational Transition of Neutral Polyacrylamide in Monovalent Saline Solutions. J Phys Chem B 2023; 127:10088-10096. [PMID: 37939001 DOI: 10.1021/acs.jpcb.3c06126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Polyacrylamide (PAM) is one of the most important water-soluble polymers that has been extensively applied in water treatment, drug delivery, and flexible electronic devices. The basic properties, e.g., microstructure, nanomechanics, and solubility, are deeply involved in the performance of PAM materials. Current research has paid more attention to the development and expansion of the macroscopic properties of PAM materials, and the study of the mechanism involved with the roles of water and ions on the properties of PAM is insufficient, especially for the behaviors of neutral amide side groups. In this study, single molecule force spectroscopy was combined with molecular dynamic (MD) simulations, atomic force microscope imaging, and dynamic light scattering to investigate the effects of monovalent ions on the nanomechanics and molecular conformations of neutral PAM (NPAM). These results show that the single-molecule elasticity and conformation of NPAM exhibit huge variation in different monovalent salt solutions. NPAM adopts an extended conformation in aqueous solutions of strong hydrated ion (acetate), while transforms into a collapse globule in the existence of weakly hydrated ion (SCN-). It is believed that the competition between intramolecular and intermolecular weak interactions plays a key role to adjust the molecular conformation and elasticity of NPAM. The competition can be largely influenced by the type of monovalent ions through hydration or a chaotropic effect. Methods utilized in this study provide a means to better understand the Hofmeister effect of ions on other macromolecules containing amide groups at the single-molecule level.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, P. R. China
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, P. R. China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, P. R. China
| | - Ya Song
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, Guizhou, P. R. China
| | - Xiaomin Kang
- School of Mechanical Engineering, University of South China, Hengyang 421001, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| |
Collapse
|
10
|
Kim HJ, Nayak BP, Zhang H, Ocko BM, Travesset A, Vaknin D, Mallapragada SK, Wang W. Two-dimensional assembly of gold nanoparticles grafted with charged-end-group polymers. J Colloid Interface Sci 2023; 650:1941-1948. [PMID: 37517193 DOI: 10.1016/j.jcis.2023.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
HYPOTHESIS Introducing charged terminal groups to polymers that graft nanoparticles enable Coulombic control over their assembly by tuning the pH and salinity of their aqueous suspensions. EXPERIMENTS Gold nanoparticles (AuNPs) are grafted with poly (ethylene glycol) (PEG) terminated with (charge-neutral), (negatively charged) or groups (positively charged), and characterized with dynamic light scattering, ζ-potential, and thermal gravimetric analysis. Liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) are used to determine the density profile and in-plane structure of the AuNPs assembly at the aqueous surface. FINDINGS Assembly of PEG-AuNPs at the liquid/vapor interface is tunable by adjusting pH or salinity for COOH but less for terminals. The distinct assembly behaviors are attributed to the overall charge of PEG-AuNPs as well as PEG conformation. COOH-PEG corona is more compact than those of the other terminal groups, leading to a crystalline structure with a smaller superlattice. The net charge per particle depends not only on the PEG terminal groups but also on the cation sequestration of PEG and the intrinsic negative charge of the AuNP surface. [1] The closeness to overall charge neutrality, and hydrogen bonding in play, brought by -PEG, drive -PEG-AuNPs to assembly and crystallinity without additives to the suspensions.
Collapse
Affiliation(s)
- Hyeong Jin Kim
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Binay P Nayak
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States
| | - Honghu Zhang
- Center for Functional Nanomaterials and NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Benjamin M Ocko
- NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Alex Travesset
- Ames National Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, United States
| | - David Vaknin
- Ames National Laboratory, and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, United States
| | - Surya K Mallapragada
- Ames National Laboratory, and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| | - Wenjie Wang
- Division of Materials Sciences and Engineering, Ames National Laboratory, U.S. DOE, Ames, IA 50011, United States.
| |
Collapse
|
11
|
Lyu K, Zhao Y, Zhang M, Tang J, Zhang J, Liu Y, Bian X, Chen X, Chen H, Wang D. Tracking of Protein Adsorption on Poly(l-lactic acid) Film Surfaces: The Role of Molar Mass. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13534-13545. [PMID: 37712535 DOI: 10.1021/acs.langmuir.3c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Poly(l-lactic acid) (PLLA) has been extensively utilized as a biomaterial for various biomedical applications. The first and one of the most critical steps upon contact with biological fluids is the adsorption of proteins on the material's surface. Understanding the behavior of protein adsorption is vital for guiding the synthesis and preparation of PLLA for biomedical purposes. In this study, total internal reflection fluorescence microscopy was employed to investigate the adsorption of human serum albumin (HSA) on PLLA films with different molar masses. We found that molar mass affects HSA adsorption in such a way that it affects only the adsorption rate constants, but not the desorption rate constants. Additionally, we observed that HSA adsorption is spatially heterogeneous and exhibits many strong binding sites regardless of the molar mass of the PLLA films. We found that the free volume of PLLA plays a crucial role in determining its water uptake capacity and surface hydration, consequently impacting the adsorption of HSA.
Collapse
Affiliation(s)
- Kaixuan Lyu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuehua Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanlong Liu
- Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xinchao Bian
- Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
12
|
Zhang S, Yu M, Zhang G, He G, Ji Y, Dong J, Zheng H, Qian L. Revealing the Control Mechanisms of pH on the Solution Properties of Chitin via Single-Molecule Studies. Molecules 2023; 28:6769. [PMID: 37836611 PMCID: PMC10574145 DOI: 10.3390/molecules28196769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Guanmei He
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Yunxu Ji
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Juan Dong
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
13
|
Kim KH, Bhujel R, Maharjan R, Lee JC, Jung HS, Kim HJ, Kim NA, Jeong SH. Biophysical characterization of siRNA-loaded lipid nanoparticles with different PEG content in an aqueous system. Eur J Pharm Biopharm 2023; 190:150-160. [PMID: 37516315 DOI: 10.1016/j.ejpb.2023.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Although lipid nanoparticles (LNP) are potential carriers of various pharmaceutical ingredients, further investigation for maintaining their stability under various environmental stressors must be performed. This study evaluated the influence of PEGylation and stress conditions on the stability of siRNA-loaded LNPs with different concentrations of PEG (0.5 mol%; 0.5 % PEG-LNP and 1.0 mol%; 1.0 % PEG-LNP) anchored to their surface. We applied end-over-end agitation, elevated temperature, and repeated freeze and thaw (F/T) cycles as physicochemical stressors of pH and ionic strength. Dynamic light scattering (DLS), flow imaging microscopy (FIM), and ionic-exchange chromatography (IEX) were to determine the degree of aggregation and change in siRNA content. The results indicate that 0.5 % PEG-LNP resisted aggregation only at low pH levels or with salt, whereas 1.0 % PEG-LNP had increased colloidal stability except at pH 4. 0.5 % PEG-LNP withstood aggregation until 71 °C and three cycles of F/T. In contrast, 1.0 % PEG-LNP maintained colloidal stability at 90 °C and seven F/T cycles. Moreover, 1.0 % PEG-LNP had higher siRNA stability under all stress conditions. Therefore, to ensure the stability of LNP and encapsulated siRNA, the PEG concentration must be carefully controlled while considering LNPs' colloidal instability mechanisms under various stress conditions.
Collapse
Affiliation(s)
- Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ripesh Bhujel
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ravi Maharjan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Jae Chul Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Hun Soon Jung
- EnhancedBio Inc. R&D Center, Seoul 04779, Republic of Korea.
| | - Hye Jeong Kim
- EnhancedBio Inc. R&D Center, Seoul 04779, Republic of Korea.
| | - Nam Ah Kim
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
14
|
Murdoch T, Quienne B, Argaiz M, Tomovska R, Espinosa E, D’Agosto F, Lansalot M, Pinaud J, Caillol S, Martín-Fabiani I. One Step Closer to Coatings Applications Utilizing Self-Stratification: Effect of Rheology Modifiers. ACS APPLIED POLYMER MATERIALS 2023; 5:6672-6684. [PMID: 37588086 PMCID: PMC10425952 DOI: 10.1021/acsapm.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Self-stratification of model blends of colloidal spheres has recently been demonstrated as a method to form multifunctional coatings in a single pass. However, practical coating formulations are complex fluids with upward of 15 components. Here, we investigate the influence of three different rheology modifiers (RMs) on the stratification of a 10 wt % 7:3 w:w blend of 270 and 96 nm anionic latex particles that do not stratify without RM. However, addition of a high molar mass polysaccharide thickener, xanthan gum, raises the viscosity and corresponding Péclet number enough to achieve small-on-top stratification as demonstrated by atomic force microscopy (AFM) measurements. Importantly, this was possible due to minimal particle-rheology modifier interactions, as demonstrated by the bulk rheology. In contrast, Carbopol 940, a microgel-based RM, was unable to achieve small-on-top stratification despite a comparable increase in viscosity. Instead, pH-dependent interactions with latex particles lead to either laterally segregated structures at pH 3 or a surface enrichment of large particles at pH 8. Strong RM-particle interactions are also observed when the triblock associative RM HEUR10kC12 is used. Here, small-on-top, large-enhanced, and randomly mixed structures were observed at respectively 0.01, 0.1, and 1 wt % HEUR10kC12. Combining rheology, dynamic light scattering, and AFM results allows the mechanisms behind the nonmonotonic stratification in the presence of associative RMs to be elucidated. Our results highlight that stratification can be predicted and controlled for RMs with weak particle interactions, while a strong RM-particle interaction may afford a wider range of stratified structures. This takes a step toward successfully harnessing stratification in coatings formulations.
Collapse
Affiliation(s)
- Timothy
J. Murdoch
- Department
of Materials, Loughborough University, LE11 1RJ Loughborough, United Kingdom
| | - Baptiste Quienne
- CNRS,
ENSCM, ICGM, Univ Montpellier, 34293 Cedex 5 Montpellier, France
| | - Maialen Argaiz
- POLYMAT
and Departmento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country, UPV/EHU, Joxe Mari
Korta Zentroa, Tolosa
Hiribidea 72, Donostia-San Sebastian 20018, Spain
| | - Radmila Tomovska
- POLYMAT
and Departmento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country, UPV/EHU, Joxe Mari
Korta Zentroa, Tolosa
Hiribidea 72, Donostia-San Sebastian 20018, Spain
| | - Edgar Espinosa
- CPE
Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials
(CP2M), Univ Lyon, Université Claude
Bernard Lyon 1, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France
| | - Franck D’Agosto
- CPE
Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials
(CP2M), Univ Lyon, Université Claude
Bernard Lyon 1, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France
| | - Muriel Lansalot
- CPE
Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials
(CP2M), Univ Lyon, Université Claude
Bernard Lyon 1, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France
| | - Julien Pinaud
- CNRS,
ENSCM, ICGM, Univ Montpellier, 34293 Cedex 5 Montpellier, France
| | - Sylvain Caillol
- CNRS,
ENSCM, ICGM, Univ Montpellier, 34293 Cedex 5 Montpellier, France
| | | |
Collapse
|
15
|
Macias E, Travesset A. Hydrogen Bond Network Disruption by Hydration Layers in Water Solutions with Salt and Hydrogen-Bonding Polymers (PEO). J Phys Chem B 2023. [PMID: 37478338 DOI: 10.1021/acs.jpcb.3c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
A mean field theory model describing the interaction of ion hydration layers with the network of hydrogen bonds of both water and the nonionic polymer poly(ethylene oxide) (PEO) is presented. The predictions of the model for types and statistics of hydrogen bonds, the number of water molecules bound to PEO, or their dependence on temperature are successfully verified from all-atom simulations at different NaCl and PEO concentrations. Furthermore, our simulations show that the binding of cations to PEO increases monotonically with salt concentration, in agreement with recent experimental results, through a mechanism in which the sum of the number of bound water and cations is independent of salt concentration. The model introduced is general and can describe any salt or hydrogen-bond-forming polymer.
Collapse
Affiliation(s)
- Elizabeth Macias
- Department of Physics and Astronomy, Iowa State University and Ames Lab, Ames, Iowa 50011, United States
| | - Alex Travesset
- Department of Physics and Astronomy, Iowa State University and Ames Lab, Ames, Iowa 50011, United States
| |
Collapse
|
16
|
Iranshahy M, Hanafi-Bojd MY, Aghili SH, Iranshahi M, Nabavi SM, Saberi S, Filosa R, Nezhad IF, Hasanpour M. Curcumin-loaded mesoporous silica nanoparticles for drug delivery: synthesis, biological assays and therapeutic potential - a review. RSC Adv 2023; 13:22250-22267. [PMID: 37492509 PMCID: PMC10363773 DOI: 10.1039/d3ra02772d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Curcumin-loaded mesoporous silica nanoparticles (MSNs) have shown promise as drug delivery systems to address the limited pharmacokinetic characteristics of curcumin. Functionalization with folic acid and PEGylation enhance anticancer activity, biocompatibility, stability, and permeability. Co-delivery with other drugs results in synergistically enhanced cytotoxic activity. Environment-responsive MSNs prevent undesirable drug leakage and increase selectivity towards target tissues. This review summarizes the methods of Cur-loaded MSN synthesis and functionalization and their application in various diseases, and also highlights the potential of Cur-loaded MSNs as a promising drug delivery system.
Collapse
Affiliation(s)
- Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | | | | | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera 82030 San Salvatore Telesino BN Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE) Brazil
| | - Satar Saberi
- Department of Chemistry, Faculty of Science, Farhangian University Tehran Iran
| | - Rosanna Filosa
- Dipartimento di Scienze e Tecnologie, Università Degli Studi Del Sannio Benevento Italy
| | - Iman Farzam Nezhad
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad Mashhad Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
17
|
Bao Y, Cui S. Single-Chain Inherent Elasticity of Macromolecules: From Concept to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3527-3536. [PMID: 36848243 DOI: 10.1021/acs.langmuir.2c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
"The Tao begets the One. One begets all things of the world." These words of wisdom from Tao Te Ching are of great inspiration to scientists in polymer materials science and engineering: The "One" means an individual polymer chain while polymer materials consist of numerous chains. The understanding of the single-chain mechanics of polymers is crucial for the bottom-up rational design of polymer materials. With a backbone and side chains, a polymer chain is more complex than a small molecule. Moreover, an individual polymer chain is usually placed in a complicated environment (such as solvent, cosolute, and solid surface), which significantly affects the behaviors of the chain. With all these factors, it is hard to fully understand the elastic behaviors of polymers. Herein, we will first introduce the concept of the single-chain inherent elasticity of polymers, which is a fundamental property determined by the polymer backbone. Then, the applications of inherent elasticity in quantifying the effects of side chains and surrounding environment will be summarized. Finally, the challenges in related fields at present and potential research directions in the future will be discussed.
Collapse
Affiliation(s)
- Yu Bao
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
18
|
Qian L, Zhang K, Guo X, Yu M. What happens when chitin becomes chitosan? A single-molecule study. RSC Adv 2023; 13:2294-2300. [PMID: 36741137 PMCID: PMC9841443 DOI: 10.1039/d2ra07303j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Chitin and chitosan are important support structures for many organisms and are important renewable macromolecular biomass resources. Structurally, with the removal of acetyl group, the solubility of chitosan is improved. However, the specific mechanism of solubility enhancement from chitin to chitosan is still unclear. In this study, the atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) was used to obtain the single-chain mechanical behavior of chitin and chitosan. The results show that the hydrogen (H)-bonds' state, which can be influenced by the solvent, determines the degree of binding water (solubility) of polysaccharides, and that the binding water energy of a single chitosan chain is 6 times higher than that of chitin in water. Thus, H-bonding is the key to solubility enhancement and can be used to modulate the solubility properties of chitosan. It is expected that our studies can help to understand the structural and functional properties of chitin and chitosan at the single molecule level.
Collapse
Affiliation(s)
- Lu Qian
- School of Materials Science and Engineering, South China University of TechnologyGuangzhou 510641China
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan UniversityChengdu 610065China
| | - Xin Guo
- School of Mechanical Engineering, Sichuan UniversityChengdu 610065China
| | - Miao Yu
- School of Mechanical Engineering, Sichuan UniversityChengdu 610065China
| |
Collapse
|
19
|
Nagy B, Ekblad T, Fragneto G, Ederth T. Structure of Self-Initiated Photopolymerized Films: A Comparison of Models. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14004-14015. [PMID: 36377414 PMCID: PMC9671054 DOI: 10.1021/acs.langmuir.2c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Self-initiated photografting and photopolymerization (SI-PGP) uses UV illumination to graft polymers to surfaces without additional photoinitiators using the monomers as initiators, "inimers". A wider use of this method is obstructed by a lack of understanding of the resulting, presumably heterogeneous, polymer structure and of the parallel degradation under continuous UV illumination. We have used neutron reflectometry to investigate the structure of hydrated SI-PGP-prepared poly(HEMA-co-PEG10MA) (poly(2-hydroxyethyl methacrylate-co-(ethylene glycol)10 methacrylate)) films and compared parabolic, sigmoidal, and Gaussian models for the polymer volume fraction distributions. Results from fitting these models to the data suggest that either model can be used to approximate the volume fraction profile to similar accuracy. In addition, a second layer of deuterated poly(methacrylic acid) (poly(dMAA)) was grafted over the existing poly(HEMA-co-PEG10MA) layer, and the resulting double-grafted films were also studied by neutron reflectometry to shed light on the UV-polymerization process and the inevitable UV-induced degradation which competes with the grafting.
Collapse
Affiliation(s)
- Béla Nagy
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| | - Tobias Ekblad
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| | - Giovanna Fragneto
- Institut
Laue-Langevin, 71 avenue des Martyrs, BP 156, 38042Grenoble, France
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83Linköping, Sweden
| |
Collapse
|
20
|
Peng Z, Zhu M, Yang J, Li L. How does Poly(ethylene glycol) with varied chain length affect the thermo-responsive behavior of methyl cellulose in aqueous solutions? POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|