1
|
Horiike Y, Aoki H, Ouchi M, Terashima T. Water-Intercalated and Humidity-Responsive Lamellar Materials by Self-Assembly of Sodium Acrylate Random Copolymers. J Am Chem Soc 2025; 147:6727-6738. [PMID: 39950680 DOI: 10.1021/jacs.4c16219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Herein, we report water-intercalated and humidity-responsive lamellar materials obtained from the self-assembly of sodium acrylate (ANa)/alkyl or oleyl acrylate (RA) random copolymers. The random copolymers efficiently absorbed water into the hydrophilic ANa/main chain phase from the outer environment to form lamellar structures consisting of the water-intercalated hydrophilic segments and the hydrophobic side chains. The lamellar formation involves controlling the weight fraction of hydrophilic segments containing water to 40-70 wt % by the RA content, hydrophobic side chains, and the amount of absorbed water. The domain spacing can be controlled in the range of 2-6 nm. More interestingly, the lamellar materials reversibly afford expansion and contraction of the domain spacing in the sub-1 nm level via the absorption and release of water, in response to relative humidity. The multilayered lamellar formation process via the intercalation of water was analyzed in situ by neutron reflectometry and atomic force microscopy measurements under humid conditions. The polymer film further served as a moisture-sensitive actuator that macroscopically induces deformation responsive to humidity.
Collapse
Affiliation(s)
- Yuki Horiike
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Yamaoka K, Fujii Y, Torikai N. Sol-Gel Transition of a Thermo-Responsive Polymer at the Closest Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17405-17409. [PMID: 39106317 DOI: 10.1021/acs.langmuir.4c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Thermo-responsive polymers are applied as surface modifications for the temperature switching of hydrophilic and hydrophobic properties through adsorption and grafting on solid substrates. The current understanding of the influence of polymer chains bound to the solid surface on the transition behavior of thermo-responsive polymers is rather restricted. In this study, we aim to elucidate the effect of the bound polymer chains at the interface on the thermo-responsive sol-gel transition behavior of aqueous methylcellulose (MC) solutions by employing a quartz crystal microbalance (QCM) to evaluate the shear modulus near the solid interface. When the sample thickness was thinner on the order of the millimeter scale, the sol-gel transition temperature evaluated by the cloud point decreased because the condensation of MC near the solid interface promoted the sol-gel transition. On the other hand, focusing on the closest solid interface on the nanometer scale by QCM, the sol-gel transition temperature increased when approaching the solid interface. Adsorption and interfacial interactions reduced the chain mobility and restrained the sol-gel transition by preventing MC chain aggregation. We demonstrated the physical properties evaluation at the closest interface between the thermo-responsive polymer and solid substrate by combining a simple analytical model of QCM and controlling the analytical depth of the QCM sensors. In conclusion, the mobility change of the bound polymer chains at the solid interface caused by adsorption and interfacial interactions must be considered when a thermo-responsive polymer is applied as in adsorbed or thin films on solid substrates for the functionalization of biomaterials.
Collapse
Affiliation(s)
- Kenji Yamaoka
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Yoshihisa Fujii
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Naoya Torikai
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
3
|
Kikuchi M, Hara M, Nagano S, Ebe H, Matsui J. Order-Order Transition in Statistical Copolymer Thin Film Induced by LCST-Type Behavior. J Phys Chem B 2024. [PMID: 39046872 DOI: 10.1021/acs.jpcb.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this paper, we describe the formation of an ordered structure in a copolymer thin film through hydration, which subsequently transitions to a different ordered structure upon dehydration. A statistical copolymer of poly(N-octadecyl acrylamide-stat-hydroxymethyl acrylamide) with a comonomer content ratio of 1:1, denoted as p(ODA50/HEAm50), was synthesized via free radical copolymerization. We prepared a thin film of this copolymer on a solid substrate and annealed it at 60 °C under humid conditions. This treatment formed a side-chain segregated lamellar (SCSegL) structure, in which the ODA and HEAm units are oriented perpendicularly to the polymer backbone and opposite each other. Increasing the annealing temperature to 90 °C led to a transition to a side-chain mixed lamellar (SCMixL) structure, where the ODA and HEAm units are also oriented perpendicularly to the polymer backbone but in both directions. The quartz crystal microbalance (QCM) data indicate that p(ODA50/HEAm50) exhibits LCST-like behavior with a transition temperature of approximately 50 °C. We conclude that the formation of the SCSegL structure at 60 °C is due to pronounced segregation between the water-adsorbed HEAm groups and the hydrophobic ODA. Conversely, dehydration at 90 °C reduces the segregation forces, forming the SCMixL structure, which exhibits lower strain. These results demonstrate that the p(ODA50/HEAm50) film undergoes an order-to-order transition driven by the hydration-dehydration process. Additionally, we found that changes in the lamellar structure significantly alter the swelling properties of the film.
Collapse
Affiliation(s)
- Mao Kikuchi
- Graduate School of Science and Engineering, Yamagata University, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| | - Mitsuo Hara
- Faculty of Engineering and Design, Kagawa University, Hayashi-Cho, Takamatsu, Kagawa 761-0396, Japan
| | - Shusaku Nagano
- College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-Ku, Tokyo 171-8501, Japan
| | - Hinako Ebe
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| | - Jun Matsui
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-Machi, Yamagata 990-8560, Japan
| |
Collapse
|
4
|
Sujita R, Aoki H, Takenaka M, Ouchi M, Terashima T. Universal Access to Water-Compatible and Nanostructured Materials via the Self-Assembly of Cationic Alternating Copolymers. ACS Macro Lett 2024; 13:747-753. [PMID: 38815215 DOI: 10.1021/acsmacrolett.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we report the water-assisted self-assembly of alternating copolymers bearing imidazolium cations and hydrophobic groups to create water-compatible and nanostructured materials. The copolymers efficiently absorbed water into the cationic segments from the outer environments, depending on the relative humidity. The absorbed water serves as hydrophilic molecules to modulate the weight fraction of hydrophilic/hydrophobic units in the samples. Thus, the morphologies and domain spacing of the nanostructures can be controlled by not only the side chains, but also the amount of absorbed water. The self-assembly of the cationic copolymers, developed herein, afforded universal access to various morphologies, including lamella, gyroid, and cylinder, in addition to the precision control of the domain spacing at the 0.01 nm level.
Collapse
Affiliation(s)
- Ryota Sujita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Ikami T, Aoki H, Terashima T. Lamellar Microphase Separation and Phase Transition of Hydrogen-Bonding/Crystalline Statistical Copolymers: Amide Functionalization at the Interface. ACS Macro Lett 2024; 13:446-452. [PMID: 38547521 DOI: 10.1021/acsmacrolett.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Microphase separation of random copolymers, as well as that of high χ-low N block copolymers, is promising to construct sub-10-nm structures into materials. Herein, we designed statistical copolymers consisting of 2-hydroxyethyl acrylate (HEA) and N-octadecylacrylamide (ODAAm) to produce crystallization and hydrogen bond-assisted lamellar structure materials. The copolymers not only formed a crystalline lamellar structure with 3-4 nm domain spacing but also maintained an amorphous lamellar structure via phase transition above the melting temperature up to approximately 100 °C. The key is to introduce hydrogen-bonding amide junctions between the octadecyl groups and the polymer backbones, by which the polymer chains are physically fixed at the interface of lamellar structures even above the melting temperature. The stabilization of the lamellar structure by the amide units is also supported by the fact that the lamellar structure of all-acrylate random copolymers bearing hydroxyethyl and crystalline octadecyl groups is disordered above the melting temperature. By spin-coating on a silicon substrate, the HEA/ODAAm copolymer formed a multilayered lamellar thin film consisting of a hydrophilic hydroxyethyl/main chain phase and a hydrophobic octadecyl phase. The structure and order-disorder transition were analyzed by neutron reflectivity.
Collapse
Affiliation(s)
- Takaya Ikami
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Imai S, Arakawa M, Nakanishi Y, Takenaka M, Aoki H, Ouchi M, Terashima T. Water-Assisted Microphase Separation of Cationic Random Copolymers into Sub-5 nm Lamellar Materials and Thin Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sahori Imai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masato Arakawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|