1
|
Clarke BR, Hu X, Petek E, Witt CL, Katsumata R, Watkins JJ, Crosby AJ, Tew GN. Wet/Dry Bottlebrush Pressure Sensitive Adhesives via a Dangling Defect-Driven Design. ACS APPLIED MATERIALS & INTERFACES 2025; 17:30140-30148. [PMID: 40347146 DOI: 10.1021/acsami.5c05934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
A series of bottlebrush pressure sensitive adhesives (PSAs) containing progressively greater numbers of large dangling ends were synthesized using ring-opening metathesis polymerization. These defects were engineered into PSAs by promoting the formation of loop defects and by manipulating the kinetic chain length such that large dangling defects are covalently bound to the bulk. The unique structure of these samples is shown to promote adhesion at interfaces by maximizing surface area contact and increasing local van der Waals forces. This design philosophy (termed defect-driven design, D3) provides an easy route to synthesize bottlebrush PSAs ∼6 times stronger than commercial VHB1000 tape. Furthermore, the inherent tendency of water to dewet on poly(dimethylsiloxane) PSAs is exacerbated in these samples, resulting in PSAs capable of indefinite cycles of wet-dry-wet adhesion (tested up to 50 cycles, 7 months apart). Further development of the D3 concept is expected to result in increased applications (e.g., dielectric actuators, wearable electronics, and especially soft robotics) as the unique design parameters are further explored.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xin Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Evon Petek
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L Witt
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Reika Katsumata
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J Watkins
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Chiang MC, Clarke BR, Tew GN, Schiffman JD. Antifouling Activity of Bottlebrush Network Hydrogels. ACS APPLIED BIO MATERIALS 2025; 8:4200-4208. [PMID: 40270321 DOI: 10.1021/acsabm.5c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Mitigating the attachment of microorganisms to polymer biomaterials is critical for preventing hospital-acquired infections. Two chemical strategies to mitigate fouling include fabricating fouling-resistant surfaces, which typically present hydrophilic polymers, such as polyethylene glycol (PEG), or creating fouling-release surfaces, which are generally hydrophobic featuring polydimethylsiloxane (PDMS). Despite the demonstrated promise of employing PEG or PDMS, amphiphilic PEG/PDMS copolymer materials remain understudied. Here, for the first time, we investigated if phase-separated amphiphilic copolymers confounded microbial adhesion. We used bottlebrush amphiphilic PEG/PDMS co-networks and homopolymer networks to study bacterial adhesion across a library of gels (ϕPEG = 0.00, 0.21, 0.40, 0.55, 0.80, and 1.00). Hydrated atomic force microscopy measurements revealed that most of the gels had low surface roughness, less than 5 nm, and an elastic modulus of ∼80 kPa. Interestingly, the surface roughness and elastic modulus of the ϕPEG = 0.40 gel were twice as high as those of the other gels due to the presence of crystalline domains, as confirmed using polarized optical microscopy on the hydrated gel. The interactions of these six well-characterized gels with bacteria were determined using Escherichia coli K12 MG1655 and Staphylococcus aureus SH1000. The attachment of both microbes decreased by at least 60% on all polymer gels versus the glass controls. S. aureus adhesion peaked on the ϕPEG = 0.40, likely due to its increased elastic modulus, consistent with previous literature demonstrating that modulus impacts microbial adhesion. These findings suggest that hydrophilic, hydrophobic, and amphiphilic biomaterials effectively resist the early attachment of Gram-negative and Gram-positive microorganisms, providing guidance for the design of next-generation antifouling surfaces.
Collapse
Affiliation(s)
- Meng-Chen Chiang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
- Materials Science and Engineering Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
3
|
Apostolides DE, Michael G, Patrickios CS, Sakai T, Kyroglou I, Kasimatis M, Iatrou H, Prévost S, Gradzielski M. The First Example of a Model Amphiphilic Polymer Conetwork Containing a Hydrophobic Oligopeptide: The Case of End-Linked Tetra[Poly(ethylene glycol)- b-oligo( L-alanine)]. Gels 2025; 11:331. [PMID: 40422352 DOI: 10.3390/gels11050331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and end-linked with another four-armed star PEG homopolymer (tetraPEG star) bearing aryl-substituted acylhydrazide terminal groups. The present successful synthesis that yielded the peptide-containing model APCN was preceded by several unsuccessful efforts that followed different synthetic strategies. In addition to the synthetic work, we also present the structural characterization of the peptide-bearing APCN in D2O using small-angle neutron scattering (SANS).
Collapse
Affiliation(s)
| | - George Michael
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Costas S Patrickios
- Department of Chemistry, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iro Kyroglou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Maria Kasimatis
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Hermis Iatrou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece
| | - Sylvain Prévost
- Institut Max von Laue-Paul Langevin (ILL), 71 Avenue des Martyrs-CS 20156, 38042 Grenoble, France
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
4
|
Petróczy A, Szanka I, Wacha A, Varga Z, Thomann Y, Thomann R, Mülhaupt R, Bereczki L, Hegyesi N, Iván B. Bicontinuous Nanophasic Conetworks of Polystyrene with Poly(dimethylsiloxane) and Divinylbenzene: From Macrocrosslinked to Hypercrosslinked Double-Hydrophobic Conetworks and Their Organogels with Solvent-Selective Swelling. Gels 2025; 11:318. [PMID: 40422338 DOI: 10.3390/gels11050318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Polymer conetworks, which consist of two or more covalently crosslinked polymer chains, not only combine the individual characteristics of their components, but possess various unique structural features and properties as well. In this study, we report on the successful synthesis of a library of polystyrene-l-poly(dimethylsiloxane) (PSt-l-PDMS) ("l" stands for "linked by") and polystyrene-l-poly(dimethylsiloxane)/divinylbenzene (PSt-l-PDMS/DVB) polymer conetworks. These conetworks were prepared via free radical copolymerization of styrene (St) with methacryloxypropyl-telechelic poly(dimethylsiloxane) (MA-PDMS-MA) as macromolecular crosslinker in the absence and presence of DVB with 36:1 and 5:1 St/DVB ratios (m/m), the latter leading to hypercrosslinked conetworks. Macroscopically homogeneous, transparent conetworks with high gel fractions were obtained over a wide range of PDMS contents from 30 to 80 m/m%. The composition of the conetworks determined by elemental analysis was found to be in good agreement with that obtained from the 1H NMR spectra of the extraction residues, as a new method which can be widely used to easily determine the composition of multicomponent networks and gels. DSC, SAXS, and AFM measurements clearly indicate bicontinuous disordered nanophase separated morphology for all the investigated conetworks with domain sizes in the range of 3-30 nm, even for the hypercrosslinked PSt-l-PDMS/DVB conetworks with extremely high crosslinking density. The cocontinuous morphology is also proved by selective, composition-dependent uniform swelling in hexane for the PDMS and in 1-nitropropane for the PSt domains. The Korsmeyer-Peppas type evaluation of the swelling data indicates hindered Fickian diffusion of both solvents in the conetwork organogels. The unique nanophasic bicontinuous morphology and the selective swelling behavior of the PSt-l-PDMS and PSt-l-PDMS/DVB conetworks and their gels offer a range of various potential applications.
Collapse
Affiliation(s)
- Anna Petróczy
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- George Hevesy PhD School of Chemistry, Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány Péter Sétány 2, H-1117 Budapest, Hungary
| | - István Szanka
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Yi Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Ralf Thomann
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Rolf Mülhaupt
- Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
| | - Laura Bereczki
- Chemical Crystallography Research Laboratory, Centre of Structural Science, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Nóra Hegyesi
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Béla Iván
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Li SY, Duan BH, Liu N, Luo J, Chen Z, Wu ZQ. Helical Star-Shaped Bottlebrush Polymers: From Controlled Synthesis to Tunable Photoluminescence and Circularly Polarized Luminescence. ACS Macro Lett 2024; 13:1396-1402. [PMID: 39377270 DOI: 10.1021/acsmacrolett.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The controlled synthesis of star-shaped bottlebrush polymers with tunable topologies is a challenge. However, such materials may exhibit distinct photoluminescence properties. Bottlebrush polymers have polymerization-induced emission (PIE) properties due to their aggregated side chains, and aggregation-induced emission (AIE) is also a unique luminescent property. In this work, we prepared a variety of highly active alkyne Pd catalysts and polymerized poly(L/D-lactic acid) macromonomers containing polymerizable phenylisocyanide groups as end groups to obtain a variety of topologically structured bottlebrush polymers with controllable molecular weights and narrow molecular weight distributions. Bottlebrush polymers with tetraphenyl ethylene (TPE) units as the core exhibit tunable photoluminescence and circularly polarized luminescence properties. We propose that such properties are due to the unique AIE characteristics of the TPE unit combined with the PIE characteristics of the bottlebrush polymer.
Collapse
Affiliation(s)
- Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bing-Hui Duan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Jing Luo
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi, Hefei, Anhui 230022, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
6
|
Clarke BR, Tew GN. Programming Mechanical Properties through Encoded Network Topologies. JOURNAL OF POLYMER SCIENCE 2024; 62:3663-3680. [PMID: 39399843 PMCID: PMC11469555 DOI: 10.1002/pol.20230594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/15/2023] [Indexed: 10/15/2024]
Abstract
Polymer networks remain an essential class of soft materials. Despite their use in everyday materials, connecting the molecular structure of the network to its macroscopic properties remains an active area of research. Much current research is enabled by advances in modern polymer chemistry providing an unprecedented level of control over macromolecular structure. At the same time, renewed interest in self-healing, dynamic, and/or adaptable materials continues to drive substantial interest in polymer network design. As part of a special issue focused on research performed in the Polymer Science and Engineering Department at the University of Massachusetts, Amherst, this review highlights connections between macromolecular structure of networks and observed mechanical properties as investigated by the Tew research group.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Amherst, MA, 01003, United States
| |
Collapse
|
7
|
Clarke BR, Witt CL, Ilton M, Crosby AJ, Watkins JJ, Tew GN. Bottlebrush Networks: A Primer for Advanced Architectures. Angew Chem Int Ed Engl 2024; 63:e202318220. [PMID: 38588310 PMCID: PMC11634236 DOI: 10.1002/anie.202318220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Bottlebrush networks (BBNs) are an exciting new class of materials with interesting physical properties derived from their unique architecture. While great strides have been made in our fundamental understanding of bottlebrush polymers and networks, an interdisciplinary approach is necessary for the field to accelerate advancements. This review aims to act as a primer to BBN chemistry and physics for both new and current members of the community. In addition to providing an overview of contemporary BBN synthetic methods, we developed a workflow and desktop application (LengthScale), enabling bottlebrush physics to be more approachable. We conclude by addressing several topical issues and asking a series of pointed questions to stimulate conversation within the community.
Collapse
Affiliation(s)
- Brandon R. Clarke
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L. Witt
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, CA 91711, United States
| | - Alfred J. Crosby
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James J. Watkins
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Apostolides D, Michael G, Patrickios CS, Notredame B, Zhang Y, Gohy JF, Prévost S, Gradzielski M, Jung FA, Papadakis CM. Dynamic Covalent Amphiphilic Polymer Conetworks Based on End-Linked Pluronic F108: Preparation, Characterization, and Evaluation as Matrices for Gel Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38669089 PMCID: PMC11082838 DOI: 10.1021/acsami.3c19189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
We present the development of a platform of well-defined, dynamic covalent amphiphilic polymer conetworks (APCN) based on an α,ω-dibenzaldehyde end-functionalized linear amphiphilic poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (PEG-b-PPG-b-PEG, Pluronic) copolymer end-linked with a triacylhydrazide oligo(ethylene glycol) triarmed star cross-linker. The developed APCNs were characterized in terms of their rheological (increase in the storage modulus by a factor of 2 with increase in temperature from 10 to 50 °C), self-healing, self-assembling, and mechanical properties and evaluated as a matrix for gel polymer electrolytes (GPEs) in both the stretched and unstretched states. Our results show that water-loaded APCNs almost completely self-mend, self-organize at room temperature into a body-centered cubic structure with long-range order exhibiting an aggregation number of around 80, and display an exceptional room temperature stretchability of ∼2400%. Furthermore, ionic liquid-loaded APCNs could serve as gel polymer electrolytes (GPEs), displaying a substantial ion conductivity in the unstretched state, which was gradually reduced upon elongation up to a strain of 4, above which it gradually increased. Finally, it was found that recycled (dissolved and re-formed) ionic liquid-loaded APCNs could be reused as GPEs preserving 50-70% of their original ion conductivity.
Collapse
Affiliation(s)
| | - George Michael
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas S. Patrickios
- Department
of Chemistry, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Benoît Notredame
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yinghui Zhang
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Jean-François Gohy
- Institute
for Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
(BSMA), Université Catholique de
Louvain (UCL), Place Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Sylvain Prévost
- Institut
Max von Laue—Paul Langevin (ILL), 71, Avenue des Martyrs—CS 20156, 38042 Grenoble Cedex 9, France
| | - Michael Gradzielski
- Stranski-Laboratorium
für Physikalische und Theoretische Chemie, Institut für
Chemie, Technische Universität, Straße des 17, Juni 124, D-10623 Berlin, Germany
| | - Florian A. Jung
- Soft Matter
Physics Group, Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Christine M. Papadakis
- Soft Matter
Physics Group, Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
9
|
Clarke BR, Tew GN. Network Constitutional Isomers. Macromolecules 2023; 56:8565-8573. [PMID: 38239340 PMCID: PMC10795480 DOI: 10.1021/acs.macromol.3c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Bottlebrush networks designed to be constitutional isomers of each other were synthesized for the first time. These network constitutional isomers (NCIs) have significantly different mechanical properties depending on their kinetic chain lengths (RK), which are controlled by the monomer-to-initiator ratio. Specifically, the low frequency moduli, yield behavior, elongation at break, and adhesive strength of these NCIs are different at the same cross-link densities. The NCI concept is extended to include RKs' dispersity through the choice of the catalyst. These NCIs highlight the impact of living polymerization chemistry on network formation. The use of living polymerization chemistry to synthesize new networks, including NCIs, is expected to significantly advance the development of next-generation materials.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Kopka B, Kost B, Pawlak A, Tomaszewska A, Krupa A, Basko M. Covalent segmented polymer networks composed of poly(2-isopropenyl-2-oxazoline) and selected aliphatic polyesters: designing biocompatible amphiphilic materials containing degradable blocks. SOFT MATTER 2023; 19:6987-6999. [PMID: 37667566 DOI: 10.1039/d3sm00948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
To promote facile and efficient synthesis of segmented covalent networks, we developed a cross-linking process with reactive polymeric components in a system without catalysts or side products. To achieve the direct formation of amphiphilic networks, an addition reaction was performed between the polyesters containing carboxyl terminal groups with pendant groups distributed along poly(2-isopropenyl-2-oxazoline) chains. Covalent cross-linking was achieved from predetermined amounts of components dissolved in DMSO at 140 °C. To tune the properties of the resulting networks, the composition and length of the polyester segments and the degree of cross-linking were changed in the feed. The chemical structure of the networks was characterized using Fourier transform infrared-attenuated total reflection spectroscopy and 13C magic-angle spinning NMR. The swelling ability of the formed networks was investigated in aqueous and organic media. Moreover, mechanical properties were tested during uniaxial compression. The cytocompatibility of the scaffolds was confirmed by MTT assay. Through the results obtained, the first report describing the cross-linking of polyesters on hydrophilic PiPOx was provided to prepare new, biocompatible materials with tuneable properties that are promising for potential biomedical applications.
Collapse
Affiliation(s)
- Bartosz Kopka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Bartłomiej Kost
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Andrzej Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Malgorzata Basko
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
11
|
Clarke BR, Kim H, Ilton M, Watkins JJ, Crosby AJ, Tew GN. The Impact of Polymerization Chemistry on the Mechanical Properties of Poly(dimethylsiloxane) Bottlebrush Elastomers. Macromolecules 2022. [PMID: 37502106 PMCID: PMC10373355 DOI: 10.1021/acs.macromol.2c01332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compare the low-strain mechanical properties of bottlebrush elastomers (BBEs) synthesized using ring-opening metathesis and free radical polymerization. Through comparison of experimentally measured elastic moduli and those predicted by an ideal, affine model, we evaluate the efficiency of our networks in forming stress-supporting strands. This comparison allowed us to develop a structural efficiency ratio that facilitates the prediction of mechanical properties relative to polymerization chemistry (e.g., softer BBEs when polymerizing under dilute conditions). This work highlights the impact that polymerization chemistry has on the structural efficiency ratio and the resultant mechanical properties of BBEs with identical side chains, providing another "knob" by which to control polymer network properties.
Collapse
Affiliation(s)
- Brandon R. Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hyemin Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, California 91711, United States
| | - James J. Watkins
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alfred J. Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|