1
|
Li K, Mu H, Jian Z. Aqueous Catalytic Olefin Polymerization With Nickel and Palladium Catalysts. Chemistry 2025:e202404797. [PMID: 40249669 DOI: 10.1002/chem.202404797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/20/2025]
Abstract
Polyolefins are extensively used in modern society, with hydrocarbon organic compounds traditionally serving as solvents for their preparation. Water, as a reaction medium, offers significant advantages, including non-flammability, non-toxicity, high specific heat capacity, and strong polarity. A promising avenue of research involves replacing organic media with water in polymerization reactions, which could yield considerable economic benefits. Among the various transition metal catalysts used to synthesize polyolefins, late-transition metal catalysts, such as Ni(II) and Pd(II) catalysts, demonstrate enhanced tolerance to polar groups, making them particularly suitable for aqueous polymerization of olefins. This review focuses on the Ni(II) and Pd(II) catalysts utilized for the aqueous catalytic polymerization of olefins, as well as various types of polyolefins fabricated. Key aspects encompass designs of catalysts, polymerization systems, monomers, and material microstructures. The preparation of ultra-high molecular weight polyethylene (UHMWPE) nanocrystals and the modulation of polymer morphology are highlighted. The possible development trend of aqueous catalytic polymerization is envisioned to achieve the development concept of environmental protection and the needs of industrial production.
Collapse
Affiliation(s)
- Kangkang Li
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, China
| |
Collapse
|
2
|
Zhang H, Liu J, Wang Y, Sun L, Yu J, Chen L, Sun J, Zhang Q, Li M, Cai Z. Nickel-catalyzed in situ synthesis of UHMWPE/TiO 2 composites with enhanced mechanical properties and adjustable photocatalytic degradabilities. J Colloid Interface Sci 2025; 678:301-312. [PMID: 39245020 DOI: 10.1016/j.jcis.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Expanding the application field of polyolefin materials through functionalization has been a research hotspot in the past three decades. Here, a TiO2-supported anilinenaphthoquinone nickel catalyst was assembled and applied for in situ ethylene polymerization with high activity (>2000 kg mol-1h-1) to produce ultra-high molecular weight polyethylene (UHMWPE)/TiO2 composites with unique physicochemical performance. The UHMWPE/TiO2 composite films and fibers prepared by in-situ ethylene polymerization are superior to the samples from the blend system in issues such as TiO2 dispersibility, mechanical property, and photocatalytic degradability. The mechanical properties (strength up to 26.8 cN/dtex, modulus up to 1248.8 cN/dtex) of the obtained UHMWPE/TiO2 composite fibers are significantly improved with a very low dosage of TiO2 (as low as 1.4 wt‰). Moreover, UHMWPE/TiO2 composites obtained by coating Al2O3 and SiO2 on the surface of TiO2 not only retain the strong absorption of ultraviolet rays, but also effectively weaken the photocatalytic degradation effect.
Collapse
Affiliation(s)
- Hu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Junhui Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Lixiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Long Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Junfen Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Mingyuan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Zhengguo Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
3
|
Kowert BA. Diffusion in Polymethylene Chain Solutions with a Polar Component. J Phys Chem B 2024; 128:10230-10237. [PMID: 39365560 DOI: 10.1021/acs.jpcb.4c04869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A hydrodynamic bead model based on Kirkwood-Riseman theory has been used to calculate the translational diffusion constant, D, for solutes with polymethylene chains in solutions with a polar component. A comparison with the experimental values for nonpolar n-alkanes in polar 2-propanol, tetrahydrofuran, chlorobenzene, chloroform, 1-octanol, quinoline, and chloroform (78 D values) and polar primary alcohols in nonpolar benzene and n-octane (24 D values) gives an average absolute percentage difference of ∼3% between the 102 experimental and calculated D values. Consideration of the solvent's temperature-dependent changes in the degree of aggregation due to hydrogen bonding was necessary for the n-alkanes in 1-octanol. Good agreement was not found for primary alcohols in 1-octanol due to solute-solvent hydrogen bonding. A correlation that depends on the solutes' molar volumes instead of their chain lengths gives worse agreement than the bead model for the n-alkanes in polar solvents and primary alcohols and n-alkanes in nonpolar solvents.
Collapse
Affiliation(s)
- Bruce A Kowert
- Department of Chemistry, Saint Louis University 3501, Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
4
|
Yue Q, Gao R, Song Z, Gou Q. Recent Advancements in the Synthesis of Ultra-High Molecular Weight Polyethylene via Late Transition Metal Catalysts. Polymers (Basel) 2024; 16:1688. [PMID: 38932038 PMCID: PMC11207456 DOI: 10.3390/polym16121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Ultra-high molecular weight polyethylenes (UHMWPEs) are significant engineering plastics for their unique properties, such as high impact resistance, abrasion resistance, weatherability, lubricity, and chemical resistance. Consequently, developing a suitable catalyst is vital in facilitating the preparation of UHMWPE. The late transition metal catalysts have emerged as effective catalysts in producing UHMWPE due to their availability, enhanced tolerance to heteroatom groups, active polymerization characteristics, and good copolymerization ability with polar monomers. In this review, we mainly focus on the late transition metal catalysts, summarizing advancements in their application over the past decade. Four key metals (Ni, Pd, Fe, Co) for generating linear or branched UHMWPE will be primarily explored in this manuscript.
Collapse
Affiliation(s)
- Qiang Yue
- Department of Polyethylene, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | | | | | | |
Collapse
|
5
|
Liu Y, Wang C, Mu H, Jian Z. Aqueous Coordination-Insertion Copolymerization for Producing High Molecular Weight Polar Polyolefins. Angew Chem Int Ed Engl 2024; 63:e202404392. [PMID: 38548659 DOI: 10.1002/anie.202404392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Hydrocarbons, when used as the medium for transition metal catalyzed organic reactions and olefin (co-)polymerization, are ubiquitous. Environmentally friendly water is highly attractive and long-sought, but is greatly challenging as coordination-insertion copolymerization reaction medium of olefin and polar monomers. Unfavorable interactions from both water and polar monomer usually lead to either catalyst deactivation or the formation of low-molecular-weight polymers. Herein, we develop well-behaved neutral phosphinophenolato nickel catalysts, which enable aqueous copolymerization of ethylene and diverse polar monomers to produce significantly high-molecular-weight linear polar polyolefins (219-549 kDa, 0.13-1.29 mol %) in a single-component fashion under mild conditions for the first time. These copolymerization reactions occur better in water than in hydrocarbons such as toluene. The dual characteristics of high molecular weight and the incorporation of a small amount of functional group result in improved surface properties while retain the desirable intrinsic properties of high-density polyethylene (HDPE).
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongliang Mu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
6
|
Wang Y, Wang Q, Tan C, Chen C. Synthesis of Polar-functionalized Isotactic Polypropylenes Using Commercial Heterogeneous Ziegler-Natta Catalyst. J Am Chem Soc 2024; 146:6837-6845. [PMID: 38426800 DOI: 10.1021/jacs.3c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The efficient synthesis of polar-functionalized polypropylenes with high molecular weight and high stereoregularity represents a challenging task. This challenge becomes even more daunting when pursuing an industrially preferred heterogeneous process. This study demonstrated the realization of these goals through the use of commercial heterogeneous Ziegler-Natta catalysts in the copolymerization of propylene with ionic cluster polar monomers. The results revealed high copolymerization activity (∼1.1 × 107 g mol-1 h-1), moderate polar monomer incorporation ratios (∼4.9 mol %), high copolymer molecular weight (Mw > 105 g mol-1), high stereoregularity ([mmmm] ∼ 96%), and high melting temperature range (150-162 °C). The utilization of ionic cluster polar monomers improved the thermal stability as well as stereoselectivity of the catalyst. Moreover, the Ziegler-Natta catalyst can homopolymerize ionic cluster polar monomers with high activities (>104 g mol-1 h-1). The resulting polar-functionalized isotactic polypropylenes (iPP) exhibited superior tensile strength, impact strength, creep resistance, transparency, and crystallinity compared with nonpolar iPP. This enhancement was attributable to the dual roles of the ionic cluster polar monomer unit, serving as both a transparent nucleating agent and a dynamic cross-linking functionality. Furthermore, the polar-functionalized iPP exhibited improved compatibility with polar materials, offering benefits for applications in composites, recycling of mixed plastic wastes, 3D printing, and other fields. This study offered a comprehensive solution for the future industrial production of polar-functionalized iPP via copolymerization, bridging the gap between an efficient and practical copolymerization process from a synthetic chemistry perspective and enhanced material properties from an application perspective.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Quan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Wang YB, Nan C, Zhuo W, Zou C, Jiang H, Hao XQ, Chen C, Song MP. Amine-Imine Nickel Catalysts with Pendant O-Donor Groups for Ethylene (Co)Polymerization. Inorg Chem 2023; 62:5105-5113. [PMID: 36933227 DOI: 10.1021/acs.inorgchem.2c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The introduction of a secondary interaction is an efficient strategy to modulate transition-metal-catalyzed ethylene (co)polymerization. In this contribution, O-donor groups were suspended on amine-imine ligands to synthesize a series of nickel complexes. By adjusting the interaction between the nickel metal center and the O-donor group on the ligands, these nickel complexes exhibited high activities for ethylene polymerization (up to 3.48 × 106 gPE·molNi-1·h-1) with high molecular weight up to 5.59 × 105 g·mol-1 and produced good polyethylene elastomers (strain recovery (SR) = 69-81%). In addition, these nickel complexes can catalyze the copolymerization of ethylene with vinyl acetic acid, 6-chloro-1-hexene, 10-undecylenic, 10-undecenoic acid, and 10-undecylenic alcohol to prepare the functionalized polyolefins.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chenlong Nan
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Weize Zhuo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chen Zou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hui Jiang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Changle Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
8
|
Zhang Y, Zhang Y, Hu X, Wang C, Jian Z. Advances on Controlled Chain Walking and Suppression of Chain Transfer in Catalytic Olefin Polymerization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yuxing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chaoqun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|