1
|
Crolais AE, Chen C, Gao J, Dolinski ND, Xu Y, de Pablo JJ, Snyder SA, Rowan SJ. A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions. J Org Chem 2025; 90:4037-4045. [PMID: 40053380 DOI: 10.1021/acs.joc.4c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The thia-Michael reaction, i.e., the addition of a thiol to an α,β-unsaturated carbonyl moiety, has recently gained significant attention within the field of dynamic covalent chemistry. Interestingly, including an additional electron-withdrawing group at the α-position of the Michael acceptor can result in room temperature (rt), catalyst-free dynamic thia-Michael reactions. Importantly, the electronic nature of the Michael acceptor can be used to tune the equilibrium constant (Keq) of these reactions. Herein we report how sterics can be used to enhance the Keq of these rt dynamic bonds. A series of benzalcyanoacetate, benzalcyanoacetamide, and benzalisoxazolone-based Michael acceptors with varying substituents in the ortho-position of their β-phenyl rings were investigated. By placing substituents in such a position, out-of-plane twisting was created between the β-phenyl ring and the α,β-unsaturated carbonyl, raising the overall energy of the reactants and leading to significant increases in Keq. By modulating the size of the ortho-substituent, the magnitude of Keq could be increased by 1.3 to 6.8 times relative to their para-substituted counterparts. The ortho-substituted acceptors could still be tuned electronically through the para-position, allowing access to r.t., dynamic covalent bonds whose Keq could be tuned from 10 to 1.8 × 106 M-1 across the three acceptor families.
Collapse
Affiliation(s)
- Alex E Crolais
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuqiao Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Junhao Gao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Yinan Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemical Engineering, Tandon School of Engineering, Department of Physics, and Courant Institute, New York University, Brooklyn, New York 11201, United States
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Scherrer S, Ramakrishna SN, Niggel V, Hsu CP, Style RW, Spencer ND, Isa L. Characterizing sliding and rolling contacts between single particles. Proc Natl Acad Sci U S A 2025; 122:e2411414122. [PMID: 40048270 PMCID: PMC11912374 DOI: 10.1073/pnas.2411414122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/15/2025] [Indexed: 03/19/2025] Open
Abstract
Contacts between particles in dense, sheared suspensions are believed to underpin much of their rheology. Roughness and adhesion are known to constrain the relative motion of particles, and thus globally affect the shear response, but an experimental description of how they microscopically influence the transmission of forces and relative displacements within contacts is lacking. Here, we show that an innovative colloidal-probe atomic force microscopy technique allows the simultaneous measurement of normal and tangential forces exchanged between tailored surfaces and microparticles while tracking their relative sliding and rolling, unlocking the direct measurement of coefficients of rolling friction, as well as of sliding friction. We demonstrate that, in the presence of sufficient traction, particles spontaneously roll, reducing dissipation and promoting longer-lasting contacts. Conversely, when rolling is prevented, friction is greatly enhanced for rough and adhesive surfaces, while smooth particles coated by polymer brushes maintain well-lubricated contacts. We find that surface roughness induces rolling due to load-dependent asperity interlocking, leading to large off-axis particle rotations. In contrast, smooth, adhesive surfaces promote rolling along the principal axis of motion. Our results offer direct values of friction coefficients for numerical studies and an interpretation of the onset of discontinuous shear thickening based on them, opening up ways to tailor rheology via contact engineering.
Collapse
Affiliation(s)
- Simon Scherrer
- Department of Materials, ETH Zürich, Zürich8093, Switzerland
| | | | - Vincent Niggel
- Department of Materials, ETH Zürich, Zürich8093, Switzerland
| | - Chiao-Peng Hsu
- Chair for Cellular Biophysics, Center for Functional Protein Assemblies, Center for Organoid Systems, Department of Bioscience, Technical University of Munich, Technical University of Munich School of Natural Sciences, Garching85748, Germany
| | - Robert W. Style
- Department of Materials, ETH Zürich, Zürich8093, Switzerland
| | | | - Lucio Isa
- Department of Materials, ETH Zürich, Zürich8093, Switzerland
| |
Collapse
|
3
|
Kim H, van der Naald M, Braaten FA, Witten TA, Rowan SJ, Jaeger HM. Shear thickening in suspensions of particles with dynamic brush layers. SOFT MATTER 2024; 20:6384-6389. [PMID: 39081238 DOI: 10.1039/d4sm00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Control of frictional interactions among liquid-suspended particles has led to tunable, strikingly non-Newtonian rheology via the formation of strong flow constraints as particles come into close proximity under shear. Typically, these frictional interactions have been in the form of physical contact, controllable via particle shape and surface roughness. We investigate a different route, where molecular bridging between nearby particle surfaces generates a controllable constraint to relative particle movement. This is achieved with surface-functionalized colloidal particles capable of forming dynamic covalent bonds with telechelic polymers that comprise the suspending fluid. At low shear stress this results in particles coated with a uniform polymer brush layer. Beyond an onset stress σ* the telechelic polymers become capable of bridging and generate shear thickening. Over the size range investigated, we find that the dynamic brush layer leads to dependence of σ* on particle diameter that closely follows a power law with exponent -1.76. In the shear thickening regime, we observe an enhanced dilation in measurements of the first normal stress difference N1 and reduction in the extrapolated volume fraction required for jamming, both consistent with an effective particle friction that increases with decreasing particle diameter. These results are discussed in light of predictions for suspensions of hard spheres and of polymer-grafted particles.
Collapse
Affiliation(s)
- Hojin Kim
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Michael van der Naald
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Finn A Braaten
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Thomas A Witten
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heinrich M Jaeger
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Jonas HJ, Schall P, Bolhuis PG. Activity affects the stability, deformation and breakage dynamics of colloidal architectures. SOFT MATTER 2024; 20:2162-2177. [PMID: 38351836 DOI: 10.1039/d3sm01255g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Living network architectures, such as the cytoskeleton, are characterized by continuous energy injection, leading to rich but poorly understood non-equilibrium physics. There is a need for a well-controlled (experimental) model system that allows basic insight into such non-equilibrium processes. Activated self-assembled colloidal architectures can fulfill this role, as colloidal patchy particles can self-assemble into colloidal architectures such as chains, rings and networks, while self-propelled colloidal particles can simultaneously inject energy into the architecture, alter the dynamical behavior of the system, and cause the self-assembled structures to deform and break. To gain insight, we conduct a numerical investigation into the effect of introducing self-propelled colloids modeled as active Brownian particles, into self-assembling colloidal dispersions of dipatch and tripatch particles. For the interaction potential, we use a previously designed model that accurately can reproduce experimental colloidal self-assembly via the critical Casimir force [Jonas et al., J. Chem. Phys., 2021, 135, 034902]. Here, we focus primarily on the breakage dynamics of three archetypal substructures, namely, dimers, chains, and rings. We find a rich response behavior to the introduction of self-propelled particles, in which the activity can enhance as well as reduce the stability of the architecture, deform the intact structures and alter the mechanisms of fragmentation. We rationalize these findings in terms of the rate and mechanisms of breakage as a function of the direction and magnitude of the active force by separating the bond breakage process into two stages: escaping the potential well and separation of the particles. The results set the stage for investigating more complex architectures.
Collapse
Affiliation(s)
- H J Jonas
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - P Schall
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, PO Box 94485, 1090 GL Amsterdam, The Netherlands
| | - P G Bolhuis
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Boynton NR, Dennis JM, Dolinski ND, Lindberg CA, Kotula AP, Grocke GL, Vivod SL, Lenhart JL, Patel SN, Rowan SJ. Accessing pluripotent materials through tempering of dynamic covalent polymer networks. Science 2024; 383:545-551. [PMID: 38300995 DOI: 10.1126/science.adi5009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.
Collapse
Affiliation(s)
- Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Joseph M Dennis
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Anthony P Kotula
- Materials Science and Engineering Division, National Institutes of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Garrett L Grocke
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Joseph L Lenhart
- Sciences of Extreme Materials Division, Polymers Branch, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Shrayesh N Patel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Dolinski ND, Tao R, Boynton NR, Kotula AP, Lindberg CA, Petersen KJ, Forster AM, Rowan SJ. Connecting Molecular Exchange Dynamics to Stress Relaxation in Phase-Separated Dynamic Covalent Networks. ACS Macro Lett 2024:174-180. [PMID: 38251912 DOI: 10.1021/acsmacrolett.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A suite of phase separated dynamic covalent networks based on highly tunable dynamic benzalcyanoacetate (BCA) thia-Michael acceptors are investigated. In situ kinetic studies on small molecule model systems are used in conjunction with macroscopic characterization of phase stability and stress relaxation to understand how the molecular dynamics relate to relaxation modes. Electronic modification of the BCA unit strongly impacts the exchange dynamics (particularly the rate of dissociation) and the overall equilibrium constant (Keq) of the system, with electron-withdrawing groups leading to decreased dissociation rate and increased Keq. Critically, below a chemistry-defined temperature cutoff (related to the stability of the hard phase domains), the stress relaxation behavior of these phase separated materials is dominated by the molecular exchange dynamics, allowing for networks with a tailored thermomechanical response.
Collapse
Affiliation(s)
- Neil D Dolinski
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ran Tao
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nicholas R Boynton
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Anthony P Kotula
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Charlie A Lindberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Kyle J Petersen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron M Forster
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Science and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60434, United States
| |
Collapse
|
7
|
Kim H, van der Naald M, Dolinski ND, Rowan SJ, Jaeger HM. Dynamic-bond-induced sticky friction tailors non-Newtonian rheology. SOFT MATTER 2023; 19:6797-6804. [PMID: 37646285 DOI: 10.1039/d3sm00479a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Frictional network formation has become a new paradigm for understanding the non-Newtonian shear-thickening behavior of dense suspensions. Recent studies have exclusively focused on interparticle friction that instantaneously vanishes when applied shear is ceased. Herein, we investigate a friction that emerges from dynamic chemical bridging of functionalized particle surfaces sheared into close proximity. This enables tailoring of both friction magnitude and the time release of the frictional coupling. The experiments use dense suspensions of thiol-functionalized particles suspended in ditopic polymers endcapped with benzalcyanoacetamide Michael-acceptors. The subsequent room temperature, catalyst-free dynamic thia-Michael reactions can form bridging interactions between the particles with dynamic covalent bonds that linger after formation and release in the absence of shear. This chemical friction mimics physical friction but is stickier, leading to tunable rheopexy. The effect of sticky friction on dense suspension rheology is explored by varying the electronic nature of the benzalcyanoacetamide moiety, the molecular weight of the ditopic polymers, the amount of a competitive bonding compound, and temperature. These results demonstrate how dynamic-bond-induced sticky friction can be used to systematically control the time dependence of the non-Newtonian suspension rheology.
Collapse
Affiliation(s)
- Hojin Kim
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Mike van der Naald
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Neil D Dolinski
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heinrich M Jaeger
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
8
|
Wang BS, Zhang Q, Wang ZQ, Shi CY, Gong XQ, Tian H, Qu DH. Acid-catalyzed Disulfide-mediated Reversible Polymerization for Recyclable Dynamic Covalent Materials. Angew Chem Int Ed Engl 2023; 62:e202215329. [PMID: 36602285 DOI: 10.1002/anie.202215329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.
Collapse
Affiliation(s)
- Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|