1
|
Ding J, Yang C, Zhou L, Li W, Li J, He C, Liu Y, He M, Qin S, Yu J. Free Radical Polymerization of Styrene and Maleimide Derivatives: Molecular Weight Control and Application as a Heat Resistance Agent. Molecules 2025; 30:1863. [PMID: 40363670 PMCID: PMC12073128 DOI: 10.3390/molecules30091863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Poly (styrene-maleic anhydride) copolymers, due to their unique structure, are extensively functionalized and modified for preparing heat stabilizers, compatibilizers, and other functional additives. Using 4-methylpent-1-ene-2,4-diyl diphenyl (α-MSD) as a chain transfer agent, a series of molecular-weight-controlled maleic anhydride-derived styrene copolymers, poly(N-p-fluorophenylmaleimide-alt-styrene) (PFS) and poly(N-p-carboxylphenylmaleimide-alt-styrene) (PCS), were synthesized via free radical copolymerization. The molecular weights of PFS and PCS were adjusted to explore their impact on the properties of PFS/PA6 and PCS/PA6 blends. Gel permeation chromatography (GPC) analysis confirmed that α-MSD effectively regulated the molecular weights of PFS and PCS. PFS and PCS with lower molecular weights exhibited significantly reduced viscosity, with minimal impact on their thermal and mechanical properties.
Collapse
Affiliation(s)
- Jiawei Ding
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
| | - Changlei Yang
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
| | - Liqiong Zhou
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
| | - Wenjing Li
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
| | - Jiaqi Li
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
| | - Cixiang He
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
| | - Yufei Liu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
| | - Min He
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
| | - Shuhao Qin
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
| | - Jie Yu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; (J.D.); (C.Y.); (L.Z.); (W.L.); (J.L.); (C.H.); (S.Q.); (J.Y.)
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
| |
Collapse
|
2
|
Kirkpatrick BE, Anseth KS, Hebner TS. Diverse reactivity of maleimides in polymer science and beyond. POLYM INT 2025; 74:296-306. [PMID: 40255264 PMCID: PMC12007691 DOI: 10.1002/pi.6715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 04/22/2025]
Abstract
Maleimides are remarkably versatile functional groups, capable of participating in homo- and copolymerizations, Diels-Alder and (photo)cycloadditions, Michael additions, and other reactions. Their reactivity has afforded materials ranging from polyimides with high upper service temperatures to hydrogels for regenerative medicine applications. Moreover, maleimides have proven to be an enabling chemistry for pharmaceutical development and bioconjugation via straightforward modification of cysteine residues. To exert spatiotemporal control over reactions with maleimides, multiple approaches have been developed to photocage nucleophiles, dienes, and dipoles. Additionally, further substitution of the maleimide alkene (e.g., mono- and di-halo-, thio-, amino-, and methyl-maleimides, among other substituents) confers tunable reactivity and dynamicity, as well as responsive mechanical and optical properties. In this mini-review, we highlight the diverse functionality of maleimides, underscoring their notable impact in polymer science. This moiety and related heterocycles will play an important role in future innovations in chemistry, biomedical, and materials research.
Collapse
Affiliation(s)
- Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
- Materials Science and Engineering Program, University of Colorado Boulder
| | | |
Collapse
|
3
|
Hillery K, Hendeniya N, Abtahi S, Chittick C, Chang B. Substrate Neutrality for Obtaining Block Copolymer Vertical Orientation. Polymers (Basel) 2024; 16:1740. [PMID: 38932090 PMCID: PMC11207976 DOI: 10.3390/polym16121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Nanopatterning methods utilizing block copolymer (BCP) self-assembly are attractive for semiconductor fabrication due to their molecular precision and high resolution. Grafted polymer brushes play a crucial role in providing a neutral surface conducive for the orientational control of BCPs. These brushes create a non-preferential substrate, allowing wetting of the distinct chemistries from each block of the BCP. This vertically aligns the BCP self-assembled lattice to create patterns that are useful for semiconductor nanofabrication. In this review, we aim to explore various methods used to tune the substrate and BCP interface toward a neutral template. This review takes a historical perspective on the polymer brush methods developed to achieve substrate neutrality. We divide the approaches into copolymer and blended homopolymer methods. Early attempts to obtain neutral substrates utilized end-grafted random copolymers that consisted of monomers from each block. This evolved into side-group-grafted chains, cross-linked mats, and block cooligomer brushes. Amidst the augmentation of the chain architecture, homopolymer blends were developed as a facile method where polymer chains with each chemistry were mixed and grafted onto the substrate. This was largely believed to be challenging due to the macrophase separation of the chemically incompatible chains. However, innovative methods such as sequential grafting and BCP compatibilizers were utilized to circumvent this problem. The advantages and challenges of each method are discussed in the context of neutrality and feasibility.
Collapse
Affiliation(s)
| | | | | | | | - Boyce Chang
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Huang Y, Zhao C, Zhang B, Li H, Zhao J. Marriage of Organic and Grubbs Catalysts for Tandem Synthesis of Bottlebrush Polyesters. ACS Macro Lett 2023; 12:1711-1717. [PMID: 38039396 DOI: 10.1021/acsmacrolett.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Bottlebrush polymers (BBPs) have gained wide attention for their special characters, such as rigid main/side chains, stemming from the exceedingly high graft density. This study aims to provide a simple synthetic approach to BBPs with polyester side chains by merging ring-opening alternating copolymerization (ROAP) and ring-opening metathesis polymerization (ROMP). A simple phosphazene base (tBuP1) is employed for the ROAP of phthalic anhydride and epoxide, after which Grubbs third-generation catalyst (G3) is added to in situ switch on ROMP of the macromonomer, i.e., norbornenyl-ended alternating polyester. The compatibility of tBuP1 with G3 and well-controlled ROMP is evidenced by DOSY-NMR of mixed catalysts, characterization of BBPs, and side-chain degradation. The method can also be extended to BBPs with one-step synthesized block copolyesters side chains. These results highlight the strength of the non-nucleophilic organobase catalyst for convenient construction of complex (degradable) polymers with compositional diversity.
Collapse
Affiliation(s)
- Yuan Huang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Chenke Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Boru Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Heng Li
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
- College of Chemistry and Key Laboratory of Advanced Organic Functional Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
5
|
Telles IM, Arfan M, Dos Santos AP. Effects of electrostatic coupling and surface polarization on polyelectrolyte brush structure. J Chem Phys 2023; 158:144902. [PMID: 37061472 DOI: 10.1063/5.0147056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
In this work, we perform molecular dynamics simulations to study a spherical polyelectrolyte brush. We explore the effects of surface polarization and electrostatic coupling on brush size and distribution of counterions. The method of image charges is considered to take into account surface polarization, considering a metallic, an unpolarizable, and a dielectric nano-core. It is observed that, for all cases, a moderate shrinking-swelling effect appears with an increase in the electrostatic coupling parameter. This effect occurs under high Manning ratios. The curves relating the average size of polyelectrolyte brush as a function of coupling show a minimum. The results show that the grafting density of polyelectrolytes on the nano-core surface plays an important role in the polarization effect. We consider a modified Poisson-Boltzmann theory to describe the counterion profiles around the brush in the case of unpolarizable nano-cores and weak electrostatic coupling.
Collapse
Affiliation(s)
- Igor M Telles
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Muhammad Arfan
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Yin R, Zhao Y, Gorczyński A, Szczepaniak G, Sun M, Fu L, Kim K, Wu H, Bockstaller MR, Matyjaszewski K. Alternating Methyl Methacrylate/ n-Butyl Acrylate Copolymer Prepared by Atom Transfer Radical Polymerization. ACS Macro Lett 2022; 11:1217-1223. [PMID: 36194204 DOI: 10.1021/acsmacrolett.2c00517] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(methyl methacrylate/n-butyl acrylate) [P(MMA/BA)] copolymer with an alternating structure was synthesized via an activator regenerated by electron transfer (ARGET) atom transfer radical (co)polymerization (ATRP) of 2-ethylfenchyl methacrylate (EFMA) and n-butyl acrylate (BA) with subsequent postpolymerization modifications (PPM). Due to the steric hindrance of the bulky pendant group of EFMA, as well as the low reactivity ratio of BA in copolymerization with methacrylates, copolymerization of EFMA and BA generated a copolymer with a high content of alternating dyads. A subsequent PPM procedure of the alternating EFMA/BA copolymer was comprised of the hydrolysis of a tertiary ester by trifluoroacetic acid and methylation by (trimethylsilyl)diazomethane. After the modifications, the architecture of the obtained alternating MMA/BA copolymers was compared with gradient and statistical copolymers with overall similar compositions, molecular weights, and dispersities. 13C NMR indicated the absence of either MMA/MMA/MMA or BA/BA/BA sequences, in contrast to an abundance of homotriads in either the statistical or especially in the gradient copolymer. All three copolymers had similar glass transition temperatures, as measured by differential scanning calorimetry (DSC), but the alternating copolymer had the narrowest range of glass transition.
Collapse
Affiliation(s)
- Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Adam Gorczyński
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.,Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Khidong Kim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Eken GA, Käfer F, Yuan C, Andrade I, Ober CK. Synthesis of
N
‐Substituted Maleimides and Poly(styrene‐
co
‐
N
‐maleimide) Copolymers and Their Potential Application as Photoresists. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gozde Aktas Eken
- Department of Material Science and Engineering Cornell University Ithaca New York 14853 United States
- College of Arts and Sciences Cornell University Ithaca New York 14853 United States
| | - Florian Käfer
- Department of Material Science and Engineering Cornell University Ithaca New York 14853 United States
- College of Arts and Sciences Cornell University Ithaca New York 14853 United States
| | - Chenyun Yuan
- Department of Material Science and Engineering Cornell University Ithaca New York 14853 United States
- College of Arts and Sciences Cornell University Ithaca New York 14853 United States
| | - Ivan Andrade
- Department of Material Science and Engineering Cornell University Ithaca New York 14853 United States
- College of Arts and Sciences Cornell University Ithaca New York 14853 United States
| | - Christopher K. Ober
- Department of Material Science and Engineering Cornell University Ithaca New York 14853 United States
- College of Arts and Sciences Cornell University Ithaca New York 14853 United States
| |
Collapse
|