1
|
Hunter SJ, Csányi E, Tyler JJS, Newell MA, Farmer MAH, Ma C, Sanderson G, Leggett GJ, Johnson EC, Armes SP. Covalent Capture of Nanoparticle-Stabilized Oil Droplets via Acetal Chemistry Using a Hydrophilic Polymer Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26735-26741. [PMID: 39641918 DOI: 10.1021/acs.langmuir.4c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We report the capture of nanosized oil droplets using a hydrophilic aldehyde-functional polymer brush. The brush was obtained via aqueous ARGET ATRP of a cis-diol-functional methacrylic monomer from a planar silicon wafer. This precursor was then selectively oxidized using an aqueous solution of NaIO4 to introduce aldehyde groups. The oil droplets were prepared by using excess sterically stabilized diblock copolymer nanoparticles to prepare a relatively coarse squalane-in-water Pickering emulsion (mean droplet diameter = 20 μm). This precursor was then further processed via high-pressure microfluidization to produce ∼200 nm squalane droplets. We demonstrate that adsorption of these nanosized oil droplets involves acetal bond formation between the cis-diol groups located on the steric stabilizer chains and the aldehyde groups on the brush. This interaction occurs under relatively mild conditions and can be tuned by adjusting the solution pH. Hence this is a useful model system for understanding oil droplet interactions with soft surfaces.
Collapse
Affiliation(s)
- Saul J Hunter
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, U.K
| | - Evelin Csányi
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Joshua J S Tyler
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark A Newell
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Matthew A H Farmer
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Camery Ma
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - George Sanderson
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Graham J Leggett
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Edwin C Johnson
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
2
|
ÖZMATARA MBAT, GEVREK TN. Synthesis of isocyanate containing cryogels for fast (bio)molecular immobilization. Turk J Chem 2024; 48:770-779. [PMID: 39512744 PMCID: PMC11539910 DOI: 10.55730/1300-0527.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/24/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Cryogels containing isocyanate reactive groups were synthesized via photopolymerization of 2-isocyanoethyl methacrylate (ICEMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA). By changing the PEGMEMA and ICEMA ratios, cryogel series with varying ratios of reactive isocyanate groups were successfully prepared. The cryogels were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis, scanning electron microscope, and rheometry. To demonstrate that molecules containing amine groups can be immobilized onto synthesized cryogels through isocyanate-amine reactions, the cryogels were conjugated with 4-(trifluoromethyl)benzylamine (TFBA) and fluorescein amine (FLA) molecules, and the conjugations were confirmed through FTIR and fluorescence microscopy, respectively, for TFBA and FLA. Additionally, immobilization of fluorescein isothiocyanate conjugated albumin from bovine serum (FITC-BSA) as fluorescein-labeled model proteins was studied to illustrate that biomolecules can also be bound to the cryogels without any linker. It was shown that the amount of immobilized FITC-labeled model proteins can be controlled by adjusting the concentration of isocyanate reactive groups within the cryogel matrix, and this functionalization was confirmed by fluorescence microscope.
Collapse
Affiliation(s)
- Merve BAT ÖZMATARA
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkiye
| | - Tuğçe Nihal GEVREK
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkiye
| |
Collapse
|
3
|
Csányi E, Hammond DB, Bower B, Johnson EC, Lishchuk A, Armes SP, Dong Z, Leggett GJ. XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment-Polymer Antenna Complexes Using a Gas Cluster Ion Source. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14527-14539. [PMID: 38954522 PMCID: PMC11256746 DOI: 10.1021/acs.langmuir.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6-9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.
Collapse
Affiliation(s)
- Evelin Csányi
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
- Institute
of Materials Research and Engineering, A*STAR
(Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Deborah B. Hammond
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Benjamin Bower
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Anna Lishchuk
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Zhaogang Dong
- Institute
of Materials Research and Engineering, A*STAR
(Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
4
|
Karchilakis G, Varlas S, Johnson EC, Norvilaite O, Farmer MAH, Sanderson G, Leggett GJ, Armes SP. Capturing Enzyme-Loaded Diblock Copolymer Vesicles Using an Aldehyde-Functionalized Hydrophilic Polymer Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14086-14098. [PMID: 38934738 PMCID: PMC11238591 DOI: 10.1021/acs.langmuir.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.
Collapse
Affiliation(s)
- Georgios Karchilakis
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Spyridon Varlas
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Oleta Norvilaite
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Matthew A. H. Farmer
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - George Sanderson
- GEO
Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K.
| | - Graham J. Leggett
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
5
|
Foli G, Capelli F, Grande M, Tagliabue S, Gherardi M, Minelli M. Optimization of Laminated Bio-Polymer Fabrication for Food Packaging Application: A Sustainable Plasma-Activated Approach. Polymers (Basel) 2024; 16:1851. [PMID: 39000706 PMCID: PMC11244328 DOI: 10.3390/polym16131851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
The current level of packaging consumption imposes a need to fabricate single-use food packaging with renewable and compostable materials, such as bio-polyesters (e.g., polylactic acid, PLA and polybutylene succinate, PBS) or cellulose, but their use is still problematic. Fabrication of bio-compostable composites can specifically address impeding challenges, and adhesive lamination, achieved with compostable glue, is becoming more and more popular with respect to the less versatile hot lamination. In this context, plasma activation, a chemical-free oxidation technique of a material's surface, is used to increase the affinity of three different biomaterials (cellulose, PLA and PBS) toward a compostable polyurethane adhesive to decrease its amount by gluing bio-polyesters to cellulose. Optical Microscopy reveals activation conditions that do not affect the integrity of the materials, while Water Contact Analyses confirm the activation of the surfaces, with contact angles decreased to roughly 50 deg in all cases. Unexpectedly, ζ-potential analyses and subtractive infrared spectroscopy highlight how the activation performed superficially etches cellulose, while for both PLA and PBS, a general decrease in surface potential and an increase in superficial hydroxyl group populations confirm the achievement of the desired oxidation. Thus, we rationalize continuous activation conditions to treat PLA and PBS and to glue them to neat cellulose. While no beneficial effect is observed with activated PLA, bi-laminate composites fabricated with activated PBS fulfill the benchmark for adhesion strength using less than before, while oxygen permeation analyses exclude plasma-induced etching even at a nanoscale.
Collapse
Affiliation(s)
- Giacomo Foli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| | - Filippo Capelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Mariachiara Grande
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | | | - Matteo Gherardi
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Industrial Engineering (DIN), University of Bologna, Via Umberto Terracini, 24, 40131 Bologna, Italy;
| | - Matteo Minelli
- Interdepartmental Centre for Industrial Research–Advanced Mechanics and Materials (CIRI–MAM), University of Bologna–Viale del Risorgimento, 2, 40136 Bologna, Italy; (F.C.); (M.G.); (M.M.)
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Umberto Terracini, 28, 40131 Bologna, Italy
| |
Collapse
|
6
|
Rider MS, Johnson EC, Bates D, Wardley WP, Gordon RH, Oliver RDJ, Armes SP, Leggett GJ, Barnes WL. Strong coupling in molecular systems: a simple predictor employing routine optical measurements. NANOPHOTONICS 2024; 13:2453-2467. [PMID: 38836102 PMCID: PMC11147498 DOI: 10.1515/nanoph-2023-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/06/2024]
Abstract
We provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field. We provide formulae for the upper limit of the splitting in terms of the molar absorption coefficient, the attenuation coefficient, the extinction coefficient (imaginary part of the refractive index) and the absorbance. To illustrate this approach, we provide a number of examples, and we also discuss some of the limitations of our approach.
Collapse
Affiliation(s)
- Marie S. Rider
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| | - Edwin C. Johnson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Demetris Bates
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - William P. Wardley
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| | - Robert H. Gordon
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Robert D. J. Oliver
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Graham J. Leggett
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - William L. Barnes
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| |
Collapse
|
7
|
Buksa H, Johnson EC, Chan DHH, McBride RJ, Sanderson G, Corrigan RM, Armes SP. Arginine-Functional Methacrylic Block Copolymer Nanoparticles: Synthesis, Characterization, and Adsorption onto a Model Planar Substrate. Biomacromolecules 2024; 25:2990-3000. [PMID: 38696732 PMCID: PMC11094727 DOI: 10.1021/acs.biomac.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.
Collapse
Affiliation(s)
- Hubert Buksa
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Derek H. H. Chan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Rory J. McBride
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - George Sanderson
- GEO
Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K.
| | - Rebecca M. Corrigan
- School
of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield, South Yorkshire S10 2TN, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
8
|
Astier S, Johnson EC, Norvilaite O, Varlas S, Brotherton EE, Sanderson G, Leggett GJ, Armes SP. Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320303 PMCID: PMC10883040 DOI: 10.1021/acs.langmuir.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.
Collapse
Affiliation(s)
- Samuel Astier
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Edwin C Johnson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Oleta Norvilaite
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Spyridon Varlas
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Emma E Brotherton
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - George Sanderson
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Graham J Leggett
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
9
|
Johnson EC, Varlas S, Norvilaite O, Neal TJ, Brotherton EE, Sanderson G, Leggett GJ, Armes SP. Adsorption of Aldehyde-Functional Diblock Copolymer Spheres onto Surface-Grafted Polymer Brushes via Dynamic Covalent Chemistry Enables Friction Modification. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6109-6122. [PMID: 37576584 PMCID: PMC10413866 DOI: 10.1021/acs.chemmater.3c01227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Dynamic covalent chemistry has been exploited to prepare numerous examples of adaptable polymeric materials that exhibit unique properties. Herein, the chemical adsorption of aldehyde-functional diblock copolymer spherical nanoparticles onto amine-functionalized surface-grafted polymer brushes via dynamic Schiff base chemistry is demonstrated. Initially, a series of cis-diol-functional sterically-stabilized spheres of 30-250 nm diameter were prepared via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization. The pendent cis-diol groups within the steric stabilizer chains of these precursor nanoparticles were then oxidized using sodium periodate to produce the corresponding aldehyde-functional spheres. Similarly, hydrophilic cis-diol-functionalized methacrylic brushes grafted from a planar silicon surface using activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) were selectively oxidized to generate the corresponding aldehyde-functional brushes. Ellipsometry and X-ray photoelectron spectroscopy were used to confirm brush oxidation, while scanning electron microscopy studies demonstrated that the nanoparticles did not adsorb onto a cis-diol-functional precursor brush. Subsequently, the aldehyde-functional brushes were treated with excess small-molecule diamine, and the resulting imine linkages were converted into secondary amine bonds via reductive amination. The resulting primary amine-functionalized brushes formed multiple dynamic imine bonds with the aldehyde-functional diblock copolymer spheres, leading to a mean surface coverage of approximately 0.33 on the upper brush layer surface, regardless of the nanoparticle size. Friction force microscopy studies of the resulting nanoparticle-decorated brushes enabled calculation of friction coefficients, which were compared to that measured for the bare aldehyde-functional brush. Friction coefficients were reasonably consistent across all surfaces except when particle size was comparable to the size of the probe tip. In this case, differences were ascribed to an increase in contact area between the tip and the brush-nanoparticle layer. This new model system enhances our understanding of nanoparticle adsorption onto hydrophilic brush layers.
Collapse
Affiliation(s)
- Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Spyridon Varlas
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Oleta Norvilaite
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Thomas J. Neal
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Emma E. Brotherton
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|