1
|
Kim Y, Hwang K, Yang D, Choi Y, Kim Y, Moon Y, Park JJ, Lee M, Kim DY. Enhanced N-type Semiconducting Performance of Asymmetric Monochlorinated Isoindigo-based Semiregioregular Polymers under Dynamic Forces. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38427782 DOI: 10.1021/acsami.3c18136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The asymmetric monochlorination strategy not only effectively addresses the steric issues in conventional dichlorination but also enables the development of promising acceptor units and semiregioregular polymers. Herein, monochlorinated isoindigo (1CIID) is successfully designed and synthesized by selectively introducing single chlorine (Cl) atoms. Furthermore, the 1CIID copolymerizes with two donor counterparts, centrosymmetric 2,2'-bithiophene (2T) and axisymmetric 4,7-di(thiophen-2-yl)benzo[1,2,5]thiadiazole (DTBT), forming two polymers, P1CIID-2T and P1CIID-DTBT. These polymers exhibit notable differences in backbone linearity and dipole moments, influenced by the symmetry of their donor counterparts. In particular, P1CIID-2T, which contains a centrosymmetric 2T unit, demonstrates a linear backbone and a significant dipole moment of 10.20 D. These properties contribute to the favorable film morphology of P1CIID-2T, characterized by highly ordered crystallinity in the presence of fifth-order (500) X-ray diffraction peaks. Notably, P1CIID-2T exhibits a significant improvement in molecular alignment under dynamic force, resulting in over 8-fold improvement in the performance of organic field-effect transistor (OFET) devices, with superior electron mobility up to 1.22 cm2 V-1 s-1. This study represents the first synthesis of asymmetric monochlorinated isoindigo-based conjugated polymers, highlighting the potential of asymmetric monochlorination for developing n-type semiconducting polymers. Moreover, our findings provide valuable insights into the relationship between the molecular structure and properties.
Collapse
Affiliation(s)
- Younghyo Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyoungtae Hwang
- Korea Institute of Science and Technology (KIST), Jeollabuk-do, Wanju-gun 55324, Republic of Korea
| | - Dongseong Yang
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yeonsu Choi
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yunseul Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Yina Moon
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jong-Jin Park
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Minwoo Lee
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Dong-Yu Kim
- School of Materials Science and Engineering (SMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|