1
|
Xian W, Maiti A, Saab AP, Li Y. Development of a coarse-grained molecular dynamics model for poly(dimethyl- co-diphenyl)siloxane. SOFT MATTER 2024; 20:8480-8492. [PMID: 39405083 DOI: 10.1039/d4sm00875h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Polydimethylsiloxane is an important polymeric material with a wide range of applications. However, environmental effects like low temperature can induce crystallization in this material with resulting changes in its structural and dynamic properties. The incorporation of phenyl-siloxane components, e.g., as in a poly(dimethyl-co-diphenyl)siloxane random copolymer, is known to suppress such crystallization. Molecular dynamics (MD) simulations can be a powerful tool to understand such effects in atomistic detail. Unfortunately, all-atomistic molecular dynamics (AAMD) is limited in both spatial dimensions and simulation times it can probe. To overcome such constraints and to extend to more useful length- and time-scales, we systematically develop a coarse-grained molecular dynamics (CGMD) model for the poly(dimethyl-co-diphenyl)siloxane system with bonded and non-bonded interactions determined from all-atomistic simulations by the iterative Boltzmann inversion (IBI) method. Additionally, we propose a lever rule that can be useful to generate non-bonded potentials for such systems without reference to the all-atomistic ground truth. Our model captures the structural and dynamic properties of the copolymer material with quantitative accuracy and is useful to study long-time dynamics of highly-entangled systems, sequence-dependent properties, phase behaviour, etc.
Collapse
Affiliation(s)
- Weikang Xian
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1572, USA.
| | - Amitesh Maiti
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Andrew P Saab
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706-1572, USA.
| |
Collapse
|
2
|
Liao Y, Lan Q. Understanding the Impact of Chain Mobility on Conformational Evolution and Kinetics of Mesophase Formation in Poly(ʟ-lactide) under Low-Pressure CO 2. Polymers (Basel) 2024; 16:1378. [PMID: 38794571 PMCID: PMC11124961 DOI: 10.3390/polym16101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Although the mesomorphic phase as an intermediate state has been introduced to understand polymer crystallization, the understanding of the mesomorphic phase is far from complete. Here, the effect of chain mobility on the mesophase structuring in melt-quenched poly(ʟ-lactide) (PLLA) treated in low-pressure CO2 at 1.6-2.0 MPa and 0 °C was investigated using infrared (IR) spectroscopy, differential scanning calorimetry (DSC), and atomic force microscopy (AFM). The IR and AFM results demonstrated that the final degree of order and the kinetics of structural evolution during the CO2-induced mesophase formation were critically dependent on the CO2 pressure. This was attributed to the distinct dynamics of conformational evolution (gg to gt conformer transition) due to the different CO2 pressures. The thermal behavior from the DSC results showed that CO2 pressure dominated both the scale and dynamics of the chain motion of PLLA. At a lower CO2 pressure of 1.6 MPa, smaller-scale segmental motion was not replaced by the larger-scale cooperative motion that occurred at a relatively higher CO2 pressure of 2 MPa, which was favorable for faster mesophase formation. Consequently, by inhibiting direct crystallization under limited mobility conditions, it was demonstrated that different chain mobility controlled by CO2 pressure and thus CO2 solubility impacted the dynamics of the mesophase formation of PLLA. The present results have implications for understanding the role of chain mobility in determining the intermediate structural phases in semicrystalline polymers.
Collapse
Affiliation(s)
| | - Qiaofeng Lan
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China;
| |
Collapse
|
3
|
Chen Y, Ishiwari F, Fukui T, Kajitani T, Liu H, Liang X, Nakajima K, Tokita M, Fukushima T. Overcoming the entropy of polymer chains by making a plane with terminal groups: a thermoplastic PDMS with a long-range 1D structural order. Chem Sci 2023; 14:2431-2440. [PMID: 36873840 PMCID: PMC9977418 DOI: 10.1039/d2sc05491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Due to its unique physical and chemical properties, polydimethylsiloxane (PDMS) is widely used in many applications, in which covalent cross-linking is commonly used to cure the fluidic polymer. The formation of a non-covalent network achieved through the incorporation of terminal groups that exhibit strong intermolecular interactions has also been reported to improve the mechanical properties of PDMS. Through the design of a terminal group capable of two-dimensional (2D) assembly, rather than the generally used multiple hydrogen bonding motifs, we have recently demonstrated an approach for inducing long-range structural ordering of PDMS, resulting in a dramatic change in the polymer from a fluid to a viscous solid. Here we present an even more surprising terminal-group effect: simply replacing a hydrogen with a methoxy group leads to extraordinary enhancement of the mechanical properties, giving rise to a thermoplastic PDMS material without covalent cross-linking. This finding would update the general notion that less polar and smaller terminal groups barely affect polymer properties. Based on a detailed study of the thermal, structural, morphological and rheological properties of the terminal-functionalized PDMS, we revealed that 2D assembly of the terminal groups results in networks of PDMS chains, which are arranged as domains with long-range one-dimensional (1D) periodic order, thereby increasing the storage modulus of the PDMS to exceed its loss modulus. Upon heating, the 1D periodic order is lost at around 120 °C, while the 2D assembly is maintained up to ∼160 °C. The 2D and 1D structures are recovered in sequence upon cooling. Due to the thermally reversible, stepwise structural disruption/formation as well as the lack of covalent cross-linking, the terminal-functionalized PDMS shows thermoplastic behavior and self-healing properties. The terminal group presented herein, which can form a 'plane', might also drive other polymers to assemble into a periodically ordered network structure, thereby allowing for significant modulation of their mechanical properties.
Collapse
Affiliation(s)
- Yugen Chen
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Tomoya Fukui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Haonan Liu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masatoshi Tokita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
4
|
Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101376] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Influence of miscible and immiscible sequences of poly(D-lactide) copolymers on the competition of stereocomplex- and homo-crystallization in poly(L-lactide) blends. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Xueyan Yun, Li X, Eerdunbayaer, Cheng P, Pan P, Dong T. Controllable Poly(L-lactic acid) Soft Film with Respirability and Its Effect on Strawberry Preservation. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21020139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Xu XH, Liu WB, Song X, Zhou L, Liu N, Zhu YY, Wu ZQ. Chain-end functionalization of living helical polyisocyanides through a Pd( ii)-mediated Sonogashira coupling reaction. Polym Chem 2021. [DOI: 10.1039/d1py00809a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Various functional helical polymers were constructed through chain-end functionalization of living helical polyisocyanides through a Pd(ii)-mediated Sonogashira coupling reaction.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Wen-Bin Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Yuan-Yuan Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
8
|
Praveena NM, Nagarajan S, Gowd EB. Stereocomplexation of enantiomeric star-shaped poly(lactide)s with a chromophore core. CrystEngComm 2021. [DOI: 10.1039/d1ce00037c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we aim to investigate the influence of the cooling rate from the melt on stereocomplex formation of equimolar blends of enantiomeric star-shaped poly(lactide)s with a dipyridamole core.
Collapse
Affiliation(s)
- N. M. Praveena
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Trivandrum 695 019
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Selvaraj Nagarajan
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Trivandrum 695 019
- India
- Department of Chemical Engineering
| | - E. Bhoje Gowd
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Trivandrum 695 019
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
9
|
Nagarajan S, Woo EM. Three-dimensional periodic architecture in Poly(ε-caprolactone) crystallized in bulk aggregates. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zheng Y, Pan P. Crystallization of biodegradable and biobased polyesters: Polymorphism, cocrystallization, and structure-property relationship. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101291] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Wang Z, Zhang C, Zhang Z, Chen X, Wang X, Wen M, Chen B, Cao W, Liu C. Polyethylene oxide enhances the ductility and toughness of polylactic acid: the role of mesophase. SOFT MATTER 2020; 16:7018-7032. [PMID: 32648874 DOI: 10.1039/d0sm00671h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A lack of understanding of the structure-property relationship of the polylactic acid (PLA)-based polymer composite system makes it a challenge to manufacture products with optimized mechanical performance by precisely regulating the microscopic structure and morphology. Herein, we chose the PLA/polyethylene oxide (PEO) blend as a model to investigate the structural reason for the enhanced ductility and toughness of this kind of material. We have demonstrated that a considerable amount of the PLA mesophases exist in the melt quenched films that display high ductility and toughness, in contrast to the PLA crystals in their counterparts of slowly cooled films that are dominated by brittle fracture. The mesophase formed by melt quenching is attributed to a moderate acceleration of PLA chain mobility due to the plasticizing effect of the flexible PEO. In situ experiments have revealed the further formation of oriented mesophases induced by tensile deformation, which presents a high consistency between the content increase and the tensile stress intensification. We illustrate that the mesophases directly develop into a microfibrillar morphology to transmit the external stress and prevent crack propagation under deformation. This work emphasizes the essential role of the PLA mesophase in acquiring the enhanced ductility and toughness of the PLA/PEO composite films, which may be generalized to other similar PLA-based polymer composite materials.
Collapse
Affiliation(s)
- Zhen Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen HP, Nagarajan S, Woo EM. Unusual Radiating-Stripe Morphology in Nonequimolar Mixtures of Poly( l-lactic acid) with Poly( d-lactic acid). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hsin-Ping Chen
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701-01, Taiwan
| | - Selvaraj Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701-01, Taiwan
| | - Eamor M. Woo
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701-01, Taiwan
| |
Collapse
|
13
|
Karimi MB, Mohammadi F, Hooshyari K. Non-humidified fuel cells using a deep eutectic solvent (DES) as the electrolyte within a polymer electrolyte membrane (PEM): the effect of water and counterions. Phys Chem Chem Phys 2020; 22:2917-2929. [PMID: 31951238 DOI: 10.1039/c9cp06207f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, deep eutectic solvents (DESs) were prepared and employed as the electrolyte in Nafion membranes. Different factors, such as the water content and Nafion counterions (H+, Li+, Na+ and K+), which could influence the PEM performance, were evaluated. The obtained results showed that the presence of water may have a constructive or destructive effect on the DES and Nafion/DES properties, which should be considered for their final applications. Also, the electronegativity of the counterion can significantly influence the Nafion/DES proton conductivity. The prepared Nafion/DES composite membranes showed superconducting properties as a result of a Grotthuss-like mechanism for proton conduction. The conductivities of the prepared membranes were compared to those of other membranes based on an upper bound concept, which showed the potential use of DESs as a promising alternative to conventional ionic liquids. Finally, the fuel cell performances of the prepared membranes at different temperatures were evaluated.
Collapse
Affiliation(s)
- Mohammad Bagher Karimi
- Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, 14965-115 Tehran, Iran.
| | - Fereidoon Mohammadi
- Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, 14965-115 Tehran, Iran.
| | - Khadijeh Hooshyari
- Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
14
|
Xie Q, Han L, Zhou J, Shan G, Bao Y, Pan P. Homocrystalline mesophase formation and multistage structural transitions in stereocomplexable racemic blends of block copolymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Ding S, Fang C, Wang X, Wang Z. Crystallization-driven microstructure changes during microphase separation for environment-friendly thermoplastic triblock copolymer elastomers. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.121993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Watts A, Hillmyer MA. Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups. Biomacromolecules 2019; 20:2598-2609. [PMID: 31241922 DOI: 10.1021/acs.biomac.9b00411] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polylactide- block-poly(γ-methyl-ε-caprolactone)- block-polylactide (LML) is a sustainable thermoplastic elastomer (TPE) candidate that exhibits competitive mechanical properties as compared to traditional styrenic TPEs. The relatively low glass transition temperature of the polylactide endblocks, however, results in stress relaxation and low levels of elastic recovery. We report the synthesis and characterization of poly(γ-methyl-ε-caprolactone) (PMCL) and LML end-functionalized with ureidopyrimidinone (UPy) hydrogen-bonding moieties to improve the elastic performance of these polymers. Although UPy-functionalized PMCL shows dynamical mechanical behavior that is distinct from the unfunctionalized homopolymer, it does not exhibit elastomeric behavior at room temperature. The addition of UPy endgroups to LML increases the ultimate tensile strength, elongation at break, and tensile toughness compared to unfunctionalized LML. Stress relaxation studies at a fixed strain show reduced levels of stress relaxation in LML with UPy endgroups. The stress relaxation was further reduced by including semicrystalline poly(( S, S)-lactide) as endblocks with UPy endgroups.
Collapse
Affiliation(s)
- Annabelle Watts
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| | - Marc A Hillmyer
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
17
|
Van Horn RM, Steffen MR, O'Connor D. Recent progress in block copolymer crystallization. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Dana O'Connor
- Department of Chemistry Allegheny College Meadville Pennsylvania
| |
Collapse
|
18
|
Rosely CVS, Nagendra B, Sivaprasad VP, Gowd EB. Influence of Boron Nitride Nanosheets on the Crystallization and Polymorphism of Poly(l-lactide). J Phys Chem B 2018; 122:6442-6451. [DOI: 10.1021/acs.jpcb.8b03211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. V. Sijla Rosely
- Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| | - Baku Nagendra
- Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| | - Vijayan Pillai Sivaprasad
- Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - E. Bhoje Gowd
- Materials Science and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110 001, India
| |
Collapse
|
19
|
Nagarajan S, Gowd EB. Star-Shaped Poly(l-lactide) with a Dipyridamole Core: Role of Polymer Chain Packing on Induced Circular Dichroism and Photophysical Properties of Dipyridamole. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Selvaraj Nagarajan
- Materials Science and Technology
Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| | - E. Bhoje Gowd
- Materials Science and Technology
Division CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
| |
Collapse
|
20
|
Guo Y, Shao J, Hou H. The toughening behavior of PLLA and its asymmetric PLLA/PDLA blends with lower optical purity. J Appl Polym Sci 2017. [DOI: 10.1002/app.44730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanmei Guo
- College of Chemistry and Chemical Engineering; JiangXi Normal University; Nanchang 330022 China
| | - Jun Shao
- College of Chemistry and Chemical Engineering; JiangXi Normal University; Nanchang 330022 China
| | - Haoqing Hou
- College of Chemistry and Chemical Engineering; JiangXi Normal University; Nanchang 330022 China
| |
Collapse
|
21
|
Huang SH, Huang YW, Chiang YW, Hsiao TJ, Mao YC, Chiang CH, Tsai JC. Nanoporous Crystalline Templates from Double-Crystalline Block Copolymers by Control of Interactive Confinement. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shih-Hung Huang
- Department
of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - You-Wei Huang
- Department
of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yeo-Wan Chiang
- Department
of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ting-Jui Hsiao
- Department
of Chemical Engineering, National Chung Cheng University, Chia-Yi 62142, Taiwan
| | - Yung-Cheng Mao
- Department
of Chemical Engineering, National Chung Cheng University, Chia-Yi 62142, Taiwan
| | - Cheng-Hung Chiang
- Department
of Chemical Engineering, National Chung Cheng University, Chia-Yi 62142, Taiwan
| | - Jing-Cherng Tsai
- Department
of Chemical Engineering, National Chung Cheng University, Chia-Yi 62142, Taiwan
| |
Collapse
|
22
|
Nagarajan S, Deepthi K, Gowd EB. Structural evolution of poly(l-lactide) block upon heating of the glassy ABA triblock copolymers containing poly(l-lactide) A blocks. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Lan Q, Li Y. Mesophase-Mediated Crystallization of Poly(l-lactide): Deterministic Pathways to Nanostructured Morphology and Superstructure Control. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Qiaofeng Lan
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Yong Li
- Ningbo Institute of Materials
Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| |
Collapse
|
24
|
Lan Q, Li Y, Chi H. Highly Enhanced Mesophase Formation in Glassy Poly(l-lactide) at Low Temperatures by Low-Pressure CO2 That Provides Moderately Increased Molecular Mobility. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00044] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qiaofeng Lan
- Ningbo
Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Yong Li
- Ningbo
Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China
| | - Haitao Chi
- Beijing
Center for Physical and Chemical Analysis, Beijing Academy of Science and Technology, Beijing 100094, China
| |
Collapse
|
25
|
Shaiju P, Murthy NS, Gowd EB. Molecular, Crystalline, and Lamellar Length-Scale Changes in the Poly(l-lactide) (PLLA) during Cyclopentanone (CPO) Desorption in PLLA/CPO Cocrystals. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02425] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P. Shaiju
- Materials
Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific
and Innovative Research (AcSIR), New Delhi 110 001, India
| | - N. Sanjeeva Murthy
- New
Jersey Center for Biomaterials, Rutgers University, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - E. Bhoje Gowd
- Materials
Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India
- Academy of Scientific
and Innovative Research (AcSIR), New Delhi 110 001, India
| |
Collapse
|