1
|
Zhai X, Wang X, Wu B, Zhou Y. Copper‐Catalyzed
Si—H Bond Insertion Polymerization for Synthesis of Optically Active Polyesters Containing Silicon. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiao‐Yong Zhai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Xiao‐Qing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
| | - Yong‐Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian Liaoning 116023 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
2
|
Akhdar A, Gautier A, Hjelmgaard T, Faure S. N-Alkylated Aromatic Poly- and Oligoamides. Chempluschem 2021; 86:298-312. [PMID: 33620768 DOI: 10.1002/cplu.202000825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Indexed: 01/18/2023]
Abstract
N-alkylated aromatic poly- and oligoamides are a particular class of abiotic foldamers that is deprived of the capability of forming intramolecular hydrogen-bonding networks to stabilize their tri-dimensional structure. The alkylation of the backbone amide nitrogen atoms greatly increases the chemical diversity accessible for aromatic poly- and oligoamides. However, the nature and the conformational preferences of the N,N-disubstituted amides profoundly modify the folding properties of these aromatic poly- and oligoamides. In this Review, representative members of this class of aromatic poly- and oligoamides will be highlighted, among them N-alkylated phenylene terephthalamides, benzanilides, pyridylamides, and aminomethyl benzamide oligomers. The principal synthetic pathways to the main classes of N-alkylated aromatic polyamides with narrow to broad molecular-weight distribution, or oligoamides with specific sequences, will be detailed and their foldameric properties will be discussed. The Review will end by describing the few applications reported to date and future prospects for the field.
Collapse
Affiliation(s)
- Ayman Akhdar
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| | - Arnaud Gautier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| | - Thomas Hjelmgaard
- Rockwool International A/S, Hovedgaden 584, 2640, Hedehusene, Denmark
| | - Sophie Faure
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, 63000, Clermont-Ferrand, France
| |
Collapse
|
3
|
Trost BM, Kalnmals CA, Ramakrishnan D, Ryan MC, Smaha RW, Parkin S. Ruthenium-Catalyzed Asymmetric Allylic Alkylation of Isatins. Org Lett 2020; 22:2584-2589. [PMID: 32202122 DOI: 10.1021/acs.orglett.0c00504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new ruthenium-based catalytic system for branched-selective asymmetric allylic alkylation is disclosed and applied to the synthesis of chiral isatin derivatives. The catalyst, which is generated in situ from commercially available CpRu(MeCN)3PF6 and a BINOL-derived phosphoramidite, is both highly active (TON up to 180) and insensitive to air and moisture. Additionally, the N-alkylated isatins accessible using this methodology are versatile building blocks that are readily transformed into chiral analogs of achiral drug molecules.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Divya Ramakrishnan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael C Ryan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Rebecca W Smaha
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
4
|
Kanbayashi N, Saegusa M, Ishido Y, Okamura TA, Onitsuka K. Synthesis of an optically active polymer containing a planar phthalimide backbone by asymmetric polymerization. Polym Chem 2020. [DOI: 10.1039/d0py01073a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein we present the precise design and synthesis of a novel polymer backbone that induces a helical structure through asymmetric polymerization reactions of a phthalimide-based monomer catalyzed by a planar-chiral cyclopentadienyl–ruthenium complex.
Collapse
Affiliation(s)
- Naoya Kanbayashi
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Marina Saegusa
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Yuki Ishido
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Taka-aki Okamura
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
5
|
Synthetic approach for optically active polymers through the combination of asymmetric chirogenic polymerization and postpolymerization modification. Polym J 2019. [DOI: 10.1038/s41428-019-0248-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Ishido Y, Kanbayashi N, Okamura TA, Onitsuka K. Side-Chain-Driven Dual Structural System of Poly-Arylopeptide: Selective Helical Formation Derived from Aromatic Ring Flips on the Backbone. ACS Macro Lett 2019; 8:694-699. [PMID: 35619526 DOI: 10.1021/acsmacrolett.9b00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A methodology for producing dual structural systems of macromolecules, which involves flipping the unsymmetrical aromatic rings on the main chain is presented. Previously, we reported a non-natural polypeptide containing an aromatic ring on the peptide backbone, called a poly "arylopeptide". Herein, we used 2,6-naphthalene rings as axially unsymmetrical spacers, which has two geometrical isomers, anti and syn, to create dual structural properties. The miniscule energy difference between the two geometrical isomers can be amplified by incorporating the 2,6-naphthylene units into the polypeptide backbone, which creates a thermodynamic driving force for the formation of two specific global structures (i.e., 31-helix or 41-helix) biased toward one side geometrical isomer depending on the side chain. Additionally, the 31-helix can be switched to the 41-helix upon addition of a small amount of additives, indicating a conformational conversion from an identical sequence. The developmental dual helical systems exploit basic molecular geometry and can serve as a design platform for synthetic polymers.
Collapse
Affiliation(s)
- Yuki Ishido
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoya Kanbayashi
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Taka-Aki Okamura
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Ishido Y, Kanbayashi N, Okamura TA, Onitsuka K. Synthesis of Nonnatural Helical Polypeptide via Asymmetric Polymerization and Reductive Cleavage of N–O Bond. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yuki Ishido
- Department of Macromolecular
Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Naoya Kanbayashi
- Department of Macromolecular
Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Taka-aki Okamura
- Department of Macromolecular
Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular
Science Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Sinclair F, Alkattan M, Prunet J, Shaver MP. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym Chem 2017. [DOI: 10.1039/c7py00340d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of olefin cross metathesis in preparing functional polymers, through either pre-functionalisation of monomers or post-polymerisation functionalisation is growing in both scope and breadth, as discussed in this review article.
Collapse
Affiliation(s)
- Fern Sinclair
- EastCHEM School of Chemistry
- Joseph Black Building
- University of Edinburgh
- Edinburgh EH9 3FJ
- UK
| | - Mohammed Alkattan
- EastCHEM School of Chemistry
- Joseph Black Building
- University of Edinburgh
- Edinburgh EH9 3FJ
- UK
| | - Joëlle Prunet
- WestCHEM
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Michael P. Shaver
- EastCHEM School of Chemistry
- Joseph Black Building
- University of Edinburgh
- Edinburgh EH9 3FJ
- UK
| |
Collapse
|
9
|
Kanbayashi N, Miyamoto S, Ishido Y, Okamura TA, Onitsuka K. Post-polymerization modification of the side chain in optically active polymers by thiol–ene reaction. Polym Chem 2017. [DOI: 10.1039/c6py01946c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
KANBAYASHI N. A New Synthetic Approach for Optically Active Polymers via Asymmetric Polymerization. KOBUNSHI RONBUNSHU 2017. [DOI: 10.1295/koron.2017-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoya KANBAYASHI
- Department of Macromolecular Science Graduate School of Science, Osaka University
| |
Collapse
|
11
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Kanbayashi N, Hosoda K, Okamura TA, Aoshima S, Onitsuka K. Enantio- and diastereoselective polymerization: asymmetric allylic alkylation catalyzed by a planar-chiral Cp′Ru complex. Polym Chem 2016. [DOI: 10.1039/c6py00484a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we examined the regio-, diastereo-, and enantioselective polymerization using asymmetric allylic alkylation catalyzed by a planar-chiral cyclopentadienyl-ruthenium (Cp′Ru) complex ((S)-1).
Collapse
Affiliation(s)
- Naoya Kanbayashi
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Kazuki Hosoda
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Taka-aki Okamura
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|