1
|
Bonetti KA, Rende D, Murphy M, Welch JT. Photocurable Hypervalent Fluorinated Sulfur Containing Thin Films with Remarkable Hardness and Modulus. Molecules 2024; 29:4413. [PMID: 39339408 PMCID: PMC11434361 DOI: 10.3390/molecules29184413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Novel tetrafluoro-λ6-sulfanyl-containing oligomers prepared by visible light-promoted addition of 1,4-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene or 1,3-(bis-chlorotetrafluoro-λ6-sulfanyl) benzene to either 1,4-diethynyl benzene or the 1,3-diethynyl isomers form hard, stress resistant thin films on spin casting. The isomeric oligomers were utilized to establish a structure-function relationship for the mechanical properties of films prepared from the oligomers. The Young's moduli of 145-nm-thick cured films could reach 60 GPa. The measured hardnesses, between 1.57 and 2.77 GPa, were more than double those of polymethyl methacrylate (PMMA) films. Curing of the tetrafluoro-λ6-sulfanyl-containing polymer films by UV irradiation resulted in coatings that exhibited remarkable hardness and modulus with good surface adhesion to silicon.
Collapse
Affiliation(s)
- Kelly A. Bonetti
- Department of Chemistry, University at Albany SUNY, Albany, NY 12222, USA;
| | - Deniz Rende
- Department of Materials Science & Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
| | - Michael Murphy
- Department of Nanoscale Science & Engineering, University at Albany SUNY, Albany, NY 12222, USA;
| | - John T. Welch
- Department of Chemistry, University at Albany SUNY, Albany, NY 12222, USA;
| |
Collapse
|
2
|
Elgoyhen J, Pirela V, Müller AJ, Tomovska R. Synthesis and Crystallization of Waterborne Thiol-ene Polymers: Toward Innovative Oxygen Barrier Coatings. ACS APPLIED POLYMER MATERIALS 2023; 5:8845-8858. [PMID: 37970532 PMCID: PMC10644330 DOI: 10.1021/acsapm.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 11/17/2023]
Abstract
The synthesis of waterborne thiol-ene polymer dispersions is challenging due to the high reactivity of thiol monomers and the premature thiol-ene polymerization that leads to high irreproducibility. By turning this challenge into an advantage, a synthesis approach of high solid content film-forming waterborne poly(thioether) prepolymers is reported based on initiator-free step growth sonopolymerization. Copolymerization of bifunctional thiol and ene monomers diallyl terephthalate, glycol dimercaptoacetate, glycol dimercaptopropionate, and 2,2-(ethylenedioxy)diethanethiol gave rise to linear poly(thioether) functional chains with molar mass ranging between 7 and 23 kDa when synthesized at 30% solid content and between 1 and 9 kDa at increased solid content of 50%. To further increase the polymers' molar mass, an additional photopolymerization step was performed in the presence of a water-soluble photoinitiator, i.e., lithium phenyl-2,4,6-trimethylbenzoylphosphinate, leading to high molar mass chains of up to 200 kDa, the highest reported so far for step grown poly(thioethers). The polymer dispersions presented good film-forming ability at room temperature, yielding semicrystalline films with a high potential for barrier coating applications. Nevertheless, affected by the polymer chemical repeating structure, which includes an aromatic ring, these thiol-ene chains can only crystallize very slowly from the molten state. Herein, for the first time, we present the successful implementation of a self-nucleation (SN) procedure for these types of poly(thioethers), which effectively accelerates their crystallization kinetics.
Collapse
Affiliation(s)
- Justine Elgoyhen
- POLYMAT
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Avda Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Valentina Pirela
- POLYMAT
and Department of Polymers and Advanced Materials: Physics Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Radmila Tomovska
- POLYMAT
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Avda Tolosa 72, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
3
|
Pirela V, Elgoyhen J, Tomovska R, Martín J, Le CMQ, Chemtob A, Bessif B, Heck B, Reiter G, Müller AJ. Unraveling the Complex Polymorphic Crystallization Behavior of the Alternating Copolymer DMDS- alt-DVE. ACS APPLIED POLYMER MATERIALS 2023; 5:5260-5269. [PMID: 37469882 PMCID: PMC10353521 DOI: 10.1021/acsapm.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023]
Abstract
A complex crystallization behavior was observed for the alternating copolymer DMDS-alt-DVE synthesized via thiol-ene step-growth polymerization. Understanding the underlying complex crystallization processes of such innovative polythioethers is critical for their application, for example, in polymer coating technologies. These alternating copolymers have polymorphic traits, resulting in different phases that may display distinct crystalline structures. The copolymer DMDS-alt-DVE was studied in an earlier work, where only two crystalline phases were reported: a low melting, L - Tm, and high melting, H - Tm phase. Remarkably, the H - Tm form was only achieved by the previous formation and melting of the L - Tm form. We applied calorimetric techniques encompassing seven orders of magnitude in scanning rates to further explore this complex polymorphic behavior. Most importantly, by rapidly quenching the sample to temperatures well below room temperature, we detected an additional polymorphic form (characterized by a very low melting phase, denoted VL - Tm). Moreover, through tailored thermal protocols, we successfully produced samples containing only one, two, or all three polymorphs, providing insights into their interrelationships. Understanding polymorphism, crystallization, and the resulting morphological differences can have significant implications and potential impact on mechanical resistance and barrier properties.
Collapse
Affiliation(s)
- Valentina Pirela
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Justine Elgoyhen
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Radmila Tomovska
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Jaime Martín
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
- Campus Industrial de Ferrol, CITENI, Esteiro, Universidade da Coruña, Ferrol 15403, Spain
| | - Cuong Minh Quoc Le
- Institut de Sciences des Matériaux de Mulhouse (IS2M), UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex 68057, France
| | - Abraham Chemtob
- Institut de Sciences des Matériaux de Mulhouse (IS2M), UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex 68057, France
| | - Brahim Bessif
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Barbara Heck
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
4
|
Hobiger V, Koler A, Kotek J, Krajnc P. Emulsion templated poly(thiol-enes): Selective oxidation improves mechanical properties. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2023.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Cassidy KJ, Shipp DA. Particle formation in thermally initiated radical‐mediated thiol‐ene emulsion polymerizations. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyle J. Cassidy
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing Clarkson University Potsdam New York USA
| | - Devon A. Shipp
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing Clarkson University Potsdam New York USA
| |
Collapse
|
6
|
Criado-Gonzalez M, Mecerreyes D. Thioether-based ROS responsive polymers for biomedical applications. J Mater Chem B 2022; 10:7206-7221. [PMID: 35611805 DOI: 10.1039/d2tb00615d] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) play a key role in several biological functions of living organisms such as regulation of cell signalling, production of some hormones, modulation of protein function or mediation of inflammation. In this regard, ROS responsive polymers are ideal candidates for the development of stimuli-responsive biomaterials for target therapies. Among different ROS-responsive polymers, those containing thioether groups are widely investigated in the biomedical field due to their hydrophobic to hydrophilic phase transition under oxidative conditions. This feature makes them able to self-assemble in aqueous solutions forming micellar-type nanoparticles or hydrogels to be mainly used as drug carriers for local therapies in damaged body areas characterized by high ROS production. This review article collects the main findings about the synthesis of thioether-based ROS responsive polymers and polypeptides, their self-assembly properties and ROS responsive behaviour for use as injectable nanoparticles or hydrogels. Afterward, the foremost applications of the thioether-based ROS responsive nanoparticles and hydrogels in the biomedical field, where cancer therapies are a key objective, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain. .,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
7
|
Infante Teixeira L, Landfester K, Thérien-Aubin H. Nanoconfinement in miniemulsion increases reaction rates of thiol–ene photopolymerization and yields high molecular weight polymers. Polym Chem 2022. [DOI: 10.1039/d2py00350c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photoinitiated thiol–ene polymerization was performed in bulk and miniemulsion. We show that the compartmentalization of the reaction inside nanodroplets led to faster reaction kinetics and yielded polymers with higher molecular weight.
Collapse
Affiliation(s)
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland and Labrador A1B 3X7, Canada
| |
Collapse
|
8
|
Suvarli N, Perner-Nochta I, Hubbuch J, Wörner M. Thiol-Functional Polymer Nanoparticles via Aerosol Photopolymerization. Polymers (Basel) 2021; 13:4363. [PMID: 34960913 PMCID: PMC8704326 DOI: 10.3390/polym13244363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Spherical, individual polymer nanoparticles with functional -SH groups were synthesized via aerosol photopolymerization (APP) employing radically initiated thiol-ene chemistry. A series of various thiol and alkene monomer combinations were investigated based on di-, tri-, and tetrafunctional thiols with difunctional allyl and vinyl ethers, and di- and trifunctional acrylates. Only thiol and alkene monomer combinations able to build cross-linked poly(thio-ether) networks were compatible with APP, which requires fast polymerization of the generated droplet aerosol during the photoreactor passage within a residence time of half-minute. Higher monomer functionalities and equal overall stoichiometry of functional groups resulted in the best nanoparticles being spherical and individual, proven by scanning electron microscopy (SEM). The presence of reactive -SH groups in the synthesized nanoparticles as a basis for post-polymerization modifications was verified by Ellman's test.
Collapse
Affiliation(s)
| | | | | | - Michael Wörner
- Institute of Process Engineering in Life Science, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (N.S.); (I.P.-N.); (J.H.)
| |
Collapse
|
9
|
Infante Teixeira L, Landfester K, Thérien-Aubin H. Selective Oxidation of Polysulfide Latexes to Produce Polysulfoxide and Polysulfone in a Waterborne Environment. Macromolecules 2021; 54:3659-3667. [PMID: 34083842 PMCID: PMC8161668 DOI: 10.1021/acs.macromol.1c00382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Indexed: 11/27/2022]
Abstract
Polymers containing sulfur centers with high oxidation states in the main chain, polysulfoxide and polysulfone, display desirable properties such as thermomechanical and chemical stability. To circumvent their challenging direct synthesis, methods based on the oxidation of a parent polysulfide have been developed but are plagued by uncontrolled reactions, leading either to ill-defined mixtures of polysulfoxides and polysulfones or to polysulfones with reduced degrees of polymerization due to overoxidation of the polymer. We developed an alternative method to produce well-defined polysulfoxide and polysulfone in a waterborne colloidal emulsion using different oxidants to control the oxidation state of sulfur in the final materials. The direct oxidation of water-based polysulfide latexes avoided the use of volatile organic solvents and allowed for the control of the oxidation state of the sulfur atoms. Oxidation of parent polysulfides by tert-butyl hydroperoxide led to the production of pure polysulfoxides, even after 70 days of reaction time. Additionally, hydrogen peroxide produced both species through the course of the reaction but yielded fully converted polysulfones after 24 h. By employing mild oxidants, our approach controlled the oxidation state of the sulfur atoms in the final sulfur-containing polymer and prevented any overoxidation, thus ensuring the integrity of the polymer chains and colloidal stability of the system. We also verified the selectivity, versatility, and robustness of the method by applying it to polysulfides of different chemical compositions and structures. The universality demonstrated by this method makes it a powerful yet simple platform for the design of sulfur-containing polymers and nanoparticles.
Collapse
Affiliation(s)
| | - Katharina Landfester
- Max Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | |
Collapse
|
10
|
Le CMQ, Vidal L, Schmutz M, Chemtob A. Droplet nucleation in miniemulsion thiol–ene step photopolymerization. Polym Chem 2021. [DOI: 10.1039/d1py00139f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reaction parameters, such as droplet size, initiator solubility and monomer solubility, which are important in favouring droplet nucleation in a miniemulsion thiol–ene step polymerization are reviewed.
Collapse
Affiliation(s)
| | - Loïc Vidal
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Marc Schmutz
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- 67000 Strasbourg
- France
| | - Abraham Chemtob
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| |
Collapse
|
11
|
Liu Y, Wei M, Jiang X, Ren M, Liu L, Wen B, Yang W. Anomalously Shaped Functional Particles Prepared by Thiol-Isocyanate Off-Stoichiometric Click Dispersion Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14417-14424. [PMID: 33198464 DOI: 10.1021/acs.langmuir.0c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anomalously shaped microparticles have attractive advantages in applications. They are usually prepared by chain-growth polymerizations in heterogeneous systems. Recently, thiol-X step-growth polymerizations have been used to produce functional particles with a regular shape but rarely anomalous shapes. Herein, we report the preparation of anomalously shaped particles by thiol-isocyanate dispersion polymerization (Dis.P) in ethanol using polyvinylpyrrolidone (PVP) as a stabilizer and catalyst. Papillae-shaped, raspberry-like, and multibulged particles are prepared by tuning monomer combinations, contents, and feed ratios. Particle morphology evolutions during polymerization are observed by scanning electron microscopy (SEM). Distinct from previous works, particles with residual -SH groups are obtained even with equal moles of monomers added initially. The residue of -SH groups is revealed by Fourier transform infrared spectroscopy (FT-IR) analyses and confirmed by detection with a fluorescent probe containing disulfide linkage. Moreover, fluorescent particle probes are formed by the reaction of excess -NCO groups on particles with fluorescein isothiocyanate isomer I (FITC) and dithioacetal-functionalized perylenediimide (DTPDI). The probes are sensitive in detection of glutathione (GSH) and Hg2+ in water. Hg2+ as low as 1-0.1 ppb is detected using a raspberry-like particle probe with DTPDI.
Collapse
Affiliation(s)
- Yuqi Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingyue Wei
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Jiang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingwei Ren
- State Key Laboratory of Advanced Forming Technology and Equipment, Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China
| | - Lianying Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bianying Wen
- School of Materials and Mechanical Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Wantai Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Lie Y, Pellis A, Funes‐Ardoiz I, Sampedro D, Macquarrie DJ, Farmer TJ. Work-hardening Photopolymer from Renewable Photoactive 3,3'-(2,5-Furandiyl)bisacrylic Acid. CHEMSUSCHEM 2020; 13:4140-4150. [PMID: 32663375 PMCID: PMC7496517 DOI: 10.1002/cssc.202000842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/01/2020] [Indexed: 05/16/2023]
Abstract
The design of a photopolymer around a renewable furan-derived chromophore is presented herein. An optimised semi-continuous oxidation method using MnO2 affords 2,5-diformylfuran from 5-(hydroxymethyl)furfural in gram quantities, allowing the subsequent synthesis of 3,3'-(2,5-furandiyl)bisacrylic acid in good yield and excellent stereoselectivity. The photoactivity of the diester of this monomer is confirmed by reaction under UV irradiation, and the proposed [2+2] cycloaddition mechanism supported further by TD-DFT calculations. Oligoesters of the photoreactive furan diacid with various aliphatic diols are prepared via chemo- and enzyme-catalysed polycondensation. The latter enzyme-catalysed (Candida antarctica lipase B) method results in the highest Mn (3.6 kDa), suggesting milder conditions employed with this protocol minimised unwanted side reactions, including untimely [2+2] cycloadditions, whilst preserving the monomer's photoactivity and stereoisomerism. The photoreactive polyester is solvent cast into a film where subsequent initiator-free UV curing leads to an impressive increase in the material stiffness, with work-hardening characteristics observed during tensile strength testing.
Collapse
Affiliation(s)
- Yann Lie
- The University of YorkDepartment of ChemistryGreen Chemistry Centre of ExcellenceYO10 5DDHeslingtonYorkUK
| | - Alessandro Pellis
- University of Natural Resources and Life Sciences ViennaDepartment of AgrobiotechnologyInstitute of Environmental BiotechnologyKonrad Lorenz Strasse 203430Tulln an der DonauAustria
| | | | - Diego Sampedro
- Department of ChemistryCentro de Investigación en Síntesis Química (CISQ)Universidad de La RiojaMadre de Dios 53E-26006LogroñoLa RiojaSpain
| | - Duncan J. Macquarrie
- The University of YorkDepartment of ChemistryGreen Chemistry Centre of ExcellenceYO10 5DDHeslingtonYorkUK
| | - Thomas J. Farmer
- The University of YorkDepartment of ChemistryGreen Chemistry Centre of ExcellenceYO10 5DDHeslingtonYorkUK
| |
Collapse
|
13
|
Santos PCM, Machado TO, Santin JVC, Feuser PE, Córneo ES, Machado‐de‐Ávila RA, Sayer C, Araújo PHH. Superparamagnetic biobased poly(thioether‐ester) via thiol‐ene polymerization in miniemulsion for hyperthermia. J Appl Polym Sci 2020. [DOI: 10.1002/app.49741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Paula C. M. Santos
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Thiago O. Machado
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - João V. C. Santin
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Paulo E. Feuser
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Emily S. Córneo
- Postgraduate Program in Health Science University of Southern Santa Catarina Florianópolis Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| | - Pedro H. H. Araújo
- Department of Chemical Engineering and Food Engineering Federal University of Santa Catarina Florianópolis Brazil
| |
Collapse
|
14
|
Dos Santos PCM, Feuser PE, Cordeiro AP, Scussel R, Abel JDS, Machado-de-Ávila RA, Rocha MEM, Sayer C, Hermes de Araújo PH. Antitumor activity associated with hyperthermia and 4-nitrochalcone loaded in superparamagnetic poly(thioether-ester) nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1895-1911. [PMID: 32552460 DOI: 10.1080/09205063.2020.1782699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The combination of hyperthermia and chemotherapy has a potential synergic effect in antitumor activity. The development of new biocompatible and biodegradable polymers to simultaneously encapsulate magnetic nanoparticles (MNPs) and antitumoral drugs offer new cancer treatment opportunities. Here, biodegradable and biocompatible poly(thioether-ester) (PTEe) was used to encapsulate MNPs and 4-nitrochalcone (4NC) using miniemulsification and solvent evaporation. The resulting hybrid particles (MNPs-4NC-PTEe) had nanometer-scale diameters, spherical morphology, negative surface charge, high encapsulation efficiency, and superparamagnetic properties. Results showed that 4NC release occurred through diffusion. Free 4NC and MNPs + 4NC-PTEe did not have any cytotoxic effect on erythrocytes and mouse embryonic fibroblast (NIH3T3) cells. 4NC antitumor activity was verified on human cervical cancer (HeLa) and melanoma (B16F10) cells. Cellular uptake of MNPs + 4NC-PTEe nanoparticles was higher in HeLa cells compared to B16F10 and NIH3T3 cells. The hyperthermia application (115 kHz-500 Oe) potentiated the 4NC effects on HeLa and B16F10 cells when MNPs + 4NC-PTEe nanoparticles were used, indicating more effective antitumor activity. We concluded that the use of MNPs + 4NC-PTEe nanoparticles associated with hyperthermia is a promising form of treatment for some types of cancers.
Collapse
Affiliation(s)
| | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rahisa Scussel
- Postgraduate Program in Health Science, University of Southern Santa Catarina, Criciúma, Brazil
| | - Jessica da Silva Abel
- Postgraduate Program in Health Science, University of Southern Santa Catarina, Criciúma, Brazil
| | | | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianopolis, Brazil
| | | |
Collapse
|
15
|
Affiliation(s)
- Cuong Minh Quoc Le
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France
- Université de Strasbourg, 67034 Strasbourg Cedex 2, France
| | - Marc Schmutz
- Institut Charles Sadron, CNRS, UPR 22, University of Strasbourg, 23 Rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - Abraham Chemtob
- Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France
- Université de Strasbourg, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
16
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
17
|
Love D, Fairbanks B, Bowman C. Reaction Environment Effect on the Kinetics of Radical Thiol-Ene Polymerizations in the Presence of Amines and Thiolate Anions. ACS Macro Lett 2020; 9:174-179. [PMID: 35638679 DOI: 10.1021/acsmacrolett.9b00960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of facile implementation, quantitative conversions, and an insensitivity to oxygen, water, and most organic functional groups, radical-mediated thiol-ene coupling (TEC) reactions have emerged as a valuable tool in macromolecule synthesis. It was recently demonstrated that the kinetics and conversions of thiyl radical-mediated reactions are adversely affected in the presence of basic amines by the formation of retardive thiolate anions. Herein, the performance of TEC polymerizations is evaluated under a variety of reaction environments with the intention to aid in the optimal formulation design of TEC reactions in the presence of amines. Results from both bulk and aqueous-phase network photopolymerizations established that sensitivity to amine basicity and pH is dependent on the thiol acidity, although norbornene-type alkenes exhibit a unique ability to achieve high conversions, where allyl ethers, vinyl ether, and vinyl siloxanes are highly inhibited. Additionally, the protic solvents such as alcohols and acetic acid are established as ideal solvents or additives to suppress or eliminate amine-induced retardation.
Collapse
|
18
|
Scott PJ, Kasprzak CR, Feller KD, Meenakshisundaram V, Williams CB, Long TE. Light and latex: advances in the photochemistry of polymer colloids. Polym Chem 2020. [DOI: 10.1039/d0py00349b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles.
Collapse
Affiliation(s)
- Philip J. Scott
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Keyton D. Feller
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Christopher B. Williams
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | - Timothy E. Long
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| |
Collapse
|
19
|
McNelles SA, Pantaleo JL, Meichsner E, Adronov A. Strain-Promoted Azide-Alkyne Cycloaddition-Mediated Step-Growth Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stuart A. McNelles
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Julia L. Pantaleo
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
| |
Collapse
|
20
|
Fuoco T, Finne-Wistrand A. Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1625059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tiziana Fuoco
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Finne-Wistrand
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
21
|
McCourt RO, Scanlan EM. A Sequential Acyl Thiol-Ene and Thiolactonization Approach for the Synthesis of δ-Thiolactones. Org Lett 2019; 21:3460-3464. [PMID: 31013100 DOI: 10.1021/acs.orglett.9b01271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel strategy for the synthesis of δ-thiolactones from inexpensive and readily available γ-unsaturated esters has been developed. This strategy incorporates a radical acyl thiol-ene reaction as the key C-S bond forming step. Cyclization is achieved via a Steglich-type thiolactonization of 5-mercaptopentanoic acids. We report the facile and scalable synthesis of δ-thiolactones in moderate to good yield under mild reaction conditions with tolerance for a range of functional groups.
Collapse
Affiliation(s)
- Ruairí O McCourt
- Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin, The University of Dublin , Dublin 2, Ireland
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute (TBSI) , Trinity College Dublin, The University of Dublin , Dublin 2, Ireland
| |
Collapse
|
22
|
Cassidy KJ, Durham OZ, Shipp DA. Composite Particles From Pickering‐Stabilized Radical Mediated Thiol‐Ene Suspension Polymerizations. MACROMOL REACT ENG 2019. [DOI: 10.1002/mren.201800075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kyle J. Cassidy
- Department of Chemistry and Biomolecular Science, andCenter for Advanced Materials ProcessingClarkson University Potsdam New York 13699–5810
| | - Olivia Z. Durham
- Department of Chemistry and Biomolecular Science, andCenter for Advanced Materials ProcessingClarkson University Potsdam New York 13699–5810
| | - Devon A. Shipp
- Department of Chemistry and Biomolecular Science, andCenter for Advanced Materials ProcessingClarkson University Potsdam New York 13699–5810
| |
Collapse
|
23
|
El-Mohtadi F, d'Arcy R, Tirelli N. Oxidation-Responsive Materials: Biological Rationale, State of the Art, Multiple Responsiveness, and Open Issues. Macromol Rapid Commun 2018; 40:e1800699. [DOI: 10.1002/marc.201800699] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Farah El-Mohtadi
- Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology; Medicine, and Health; The University of Manchester; Manchester M13 9PT UK
| | - Richard d'Arcy
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; 16163 Genova Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology; Medicine, and Health; The University of Manchester; Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; 16163 Genova Italy
| |
Collapse
|
24
|
Hoelscher F, Machado TO, de Oliveira D, Hermes de Araújo PH, Sayer C. Enzymatically catalyzed degradation of poly (thioether-ester) nanoparticles. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Jenjob R, Seidi F, Crespy D. Recent advances in polymerizations in dispersed media. Adv Colloid Interface Sci 2018; 260:24-31. [PMID: 30170689 DOI: 10.1016/j.cis.2018.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023]
Abstract
Advances in chemistry heterophase polymerizations reflect new developments in polymer chemistry. Although some few polymerization reactions cannot be performed in dispersed media, new polymerization reactions can still benefit from advantages of heterophase reactions, which are fast kinetics due to high local concentration of reagents and advantageous heat exchange. We describe here advances in heterophase polymerizations, with a focus on miniemulsion polymerization, which are mainly driven by academic interest for biomedicine and energy science. Click-reactions in dispersion are particularly interesting because they are bioorthogonals. Synthesis of highly crosslinked polymer colloids, especially with conjugated polymers, has found applications in gas storage, catalysis, and production of energy. Finally, we show how spatial segregation in heterophase polymerization can help to obtain polymer materials with unique structures.
Collapse
Affiliation(s)
- Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand.
| |
Collapse
|
26
|
|
27
|
Mono-allyloxylated Cucurbit[7]uril Acts as an Unconventional Amphiphile To Form Light-Responsive Vesicles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Park KM, Baek K, Ko YH, Shrinidhi A, Murray J, Jang WH, Kim KH, Lee JS, Yoo J, Kim S, Kim K. Mono-allyloxylated Cucurbit[7]uril Acts as an Unconventional Amphiphile To Form Light-Responsive Vesicles. Angew Chem Int Ed Engl 2018; 57:3132-3136. [DOI: 10.1002/anie.201713059] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kyeng Min Park
- Center for Self-assembly and Complexity (CSC); Institute for Basic Science (IBS); Pohang 37363 Republic of Korea
- Department of Nanomaterials Science and Engineering; University of Science and Technology (UST); Daejeon 34113 Republic of Korea
| | - Kangkyun Baek
- Center for Self-assembly and Complexity (CSC); Institute for Basic Science (IBS); Pohang 37363 Republic of Korea
| | - Young Ho Ko
- Center for Self-assembly and Complexity (CSC); Institute for Basic Science (IBS); Pohang 37363 Republic of Korea
| | - Annadka Shrinidhi
- Center for Self-assembly and Complexity (CSC); Institute for Basic Science (IBS); Pohang 37363 Republic of Korea
| | - James Murray
- Center for Self-assembly and Complexity (CSC); Institute for Basic Science (IBS); Pohang 37363 Republic of Korea
| | - Won Hyuk Jang
- Division of Integrative Biosciences and Biotechnology; POSTECH; Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering; POSTECH; Republic of Korea
- Division of Integrative Biosciences and Biotechnology; POSTECH; Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center & Department of Biological Chemistry; KIST-School Korea Institute of Science & Technology; Seoul 02792 Republic of Korea
| | - Jejoong Yoo
- Center for Self-assembly and Complexity (CSC); Institute for Basic Science (IBS); Pohang 37363 Republic of Korea
| | - Sungwan Kim
- Department of Chemistry; POSTECH; Pohang 37363 Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC); Institute for Basic Science (IBS); Pohang 37363 Republic of Korea
- Department of Chemistry; POSTECH; Pohang 37363 Republic of Korea
- Division of Integrative Biosciences and Biotechnology; POSTECH; Republic of Korea
| |
Collapse
|
29
|
Yu L, Zhang M, Du FS, Li ZC. ROS-responsive poly(ε-caprolactone) with pendent thioether and selenide motifs. Polym Chem 2018. [DOI: 10.1039/c8py00620b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synthesis and oxidation properties of three chalcogen-containing ROS-responsive poly(ε-caprolactone)s have been reported.
Collapse
Affiliation(s)
- Li Yu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Mei Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
30
|
Cardoso PB, Machado TO, Feuser PE, Sayer C, Meier MAR, Araújo PHH. Biocompatible Polymeric Nanoparticles From Castor Oil Derivatives via Thiol-Ene Miniemulsion Polymerization. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Priscilla B. Cardoso
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianópolis Brazil
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry (IOC); Fritz-Haber-Weg 6, 76131 Karlsruhe Germany
| | - Thiago O. Machado
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianópolis Brazil
| | - Paulo E. Feuser
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianópolis Brazil
| | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianópolis Brazil
| | - Michael A. R. Meier
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry (IOC); Fritz-Haber-Weg 6, 76131 Karlsruhe Germany
| | - Pedro H. H. Araújo
- Department of Chemical Engineering and Food Engineering; Federal University of Santa Catarina; Florianópolis Brazil
| |
Collapse
|
31
|
Durham OZ, Chapman DV, Krishnan S, Shipp DA. Radical Mediated Thiol-Ene Emulsion Polymerizations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Olivia Z. Durham
- Department of Chemistry & Biomolecular Science, ‡Department of Chemical & Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United States
| | - Dana V. Chapman
- Department of Chemistry & Biomolecular Science, ‡Department of Chemical & Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United States
| | - Sitaraman Krishnan
- Department of Chemistry & Biomolecular Science, ‡Department of Chemical & Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United States
| | - Devon A. Shipp
- Department of Chemistry & Biomolecular Science, ‡Department of Chemical & Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
32
|
Tan J, Li C, De Bruycker K, Zhang G, Gu J, Zhang Q. Recyclable cross-linked hydroxythioether particles with tunable structures via robust and efficient thiol-epoxy dispersion polymerizations. RSC Adv 2017. [DOI: 10.1039/c7ra10481b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thiol-epoxy reactions were first exploited as a simple method for the preparation of recyclable cross-linked hydroxythioether particles with tunable structures.
Collapse
Affiliation(s)
- Jiaojun Tan
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Chunmei Li
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Kevin De Bruycker
- Department of Organic and Macromolecular Chemistry
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Ghent
- Belgium
| | - Guoxian Zhang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Junwei Gu
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Qiuyu Zhang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| |
Collapse
|
33
|
Jiang K, Liu Y, Yan Y, Wang S, Liu L, Yang W. Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polym Chem 2017. [DOI: 10.1039/c6py02094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Particles with a hard body and soft, clickable dimple- or bulge-patches are prepared by simple combined chain- and step-growth dispersion polymerization.
Collapse
Affiliation(s)
- Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yaping Yan
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shengliu Wang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
34
|
|
35
|
Alimohammadi F, Wang C, Durham OZ, Norton HR, Bowman CN, Shipp DA. Radical mediated thiol-ene/yne dispersion polymerizations. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Gou Z, Zuo Y, Qi J, Li Z, Feng S. A new route to achieve the side-chain-type sulfone-containing polysiloxanes via sulfide oxidation-induced cleavage and rearrangement of Si–O–Si bonds with fine selectivity toward cyclosiloxanes. Polym Chem 2016. [DOI: 10.1039/c6py01000h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel approach to obtain polysiloxanes containing sulfone groups was carried out.
Collapse
Affiliation(s)
- Zhiming Gou
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Yujing Zuo
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Jinwan Qi
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Zhaoyue Li
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials & Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| |
Collapse
|