1
|
Hu J, Wang W, Liu X, Du Y, Zhang H, Duan R, Bian X, Liu Y, Chen X. Synergistic enhancement of poly(lactide) melt strength via copolymerization and multi-arm branching strategy. Int J Biol Macromol 2024; 280:136161. [PMID: 39357705 DOI: 10.1016/j.ijbiomac.2024.136161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The lower melt strength of poly(lactide) (PLA) limits its broader applications. Here, a strategy combining copolymerization with multi-arm branching was propose to enhance the melt strength of PLA. Initially, stereoisomeric cyclic ester monomers (CEM) synthesized via zeolite catalysis were copolymerized into PLA chains. Subsequently, rheological testing revealed that the zero-shear viscosity (η0) of linear PLA increased by 467 % with only 1 mol% of CEM units. Our study further systematically explored the relationship between the side group structure and chirality of the comonomers and the rheological properties of the copolymers. CEMs with long-chain branched structures and opposite chirality had the best enhancement effect. In order to further enhance the melt strength, we successfully achieved alterations in polymer topology by employing trimethylolpropane as an initiator, corresponding three-arm copolymers achieve up to a 67-fold increase in η0 (1.0 kPa∙s to 68.1 kPa∙s). Tensile tests indicated that the mechanical properties of the copolymers were comparable to those of PLA, with a tensile strength of approximately 65 MPa. Additionally, due to the high melt strength, we successfully produced closed-cell PLA-based foam materials with uniform pore sizes. In summary, this study furnishes a feasible method for designing polymer materials possessing the desired melt strength.
Collapse
Affiliation(s)
- Jinbo Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wenbo Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xinyan Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yeqi Du
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Ranlong Duan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xinchao Bian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| | - Yanlong Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
2
|
Wang Q, Jiang W, Cai Y, Tišma M, Baganz F, Shi J, Lye GJ, Xiang W, Hao J. 2-Hydroxyisovalerate production by Klebsiella pneumoniae. Enzyme Microb Technol 2024; 172:110330. [PMID: 37866134 DOI: 10.1016/j.enzmictec.2023.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
2-Hydroxyisovalerate is a valuable chemical that can be used in the production of biodegradable polyesters. In nature, it was only produced at a very low level by Lactococcus lactis. 2-Ketoisovalerate is an intermediate metabolite of the branched-chain amino acid biosynthesis pathway, and Klebsiella pneumoniae ΔbudAΔldhA (Kp ΔbudAΔldhA) was a 2-ketoisovalerate producing strain. In this research, 2-hydroxyisovalerate was identified as a metabolite of Kp ΔbudAΔldhA, and its synthesis pathway was revealed. It was found that 2-ketoisovalerate and 2-hydroxyisovalerate were produced by Kp ΔbudA and Kp ΔbudAΔldhA, but not by Kp ΔbudAΔldhAΔilvD in which the 2-ketoisovalerate synthesis was blocked. budA, ldhA, and ilvD encode α-acetolactate decarboxylase, lactate dehydrogenase, and dihydroxy acid dehydratase, respectively. Thus, it was deduced that 2-hydroxyisovalerate was synthesized from 2-ketoisovalerate. Isoenzymes of ketopantoate reductase PanE, PanE2, and IlvC were suspected of being responsible for this reaction. Kinetic parameters of these enzymes were detected, and they all hold the 2-ketoisovalerate reductase activities. PanE and PanE2 use both NADH and NADPH as co-factors. While IlvC only uses NADH as a co-factor. Over-expression of panE, panE2, or ilvC in Kp ΔbudAΔldhA all enhanced the production of 2-hydroxyisovalerate. Accordingly, 2-hydroxyisovalerate levels were reduced by knocking out panE or panE2. In fed-batch fermentation, 14.41 g/L of 2-hydroxyisovalerate was produced by Kp ΔbudAΔldhA-panE, with a substrate conversion ratio of 0.13 g/g glucose.
Collapse
Affiliation(s)
- Qinghui Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, People's Republic of China
| | - Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaoyu Cai
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China
| | - Gary J Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, People's Republic of China
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
3
|
Tsuji H, Nogata S, Gamo H, Hikima K, Matsuda A, Arakawa Y. Synthesis, stereocomplex crystallization, homo-crystallization, and thermal properties and degradation of enantiomeric aromatic poly(lactic acid)s, poly(mandelic acid)s. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Kanomi S, Marubayashi H, Miyata T, Tsuda K, Jinnai H. Nanodiffraction Imaging of Polymer Crystals. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shusuke Kanomi
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hironori Marubayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tomohiro Miyata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kenji Tsuda
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
5
|
Zheng Y, Pan P. Crystallization of biodegradable and biobased polyesters: Polymorphism, cocrystallization, and structure-property relationship. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101291] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Marubayashi H, Ushio T, Nojima S. Crystal Polymorphism of Biobased Polyester Composed of Isomannide and Succinic Acid. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Cao XH, Yang JL, Wu HL, Wang RY, Zhang XH, Xu JT. Crystallization behavior and morphology of novel aliphatic poly(monothiocarbonate)s. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
A synthetic pathway for the production of 2-hydroxyisovaleric acid in Escherichia coli. ACTA ACUST UNITED AC 2018; 45:579-588. [DOI: 10.1007/s10295-018-2005-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022]
Abstract
Abstract
Synthetic biology, encompassing the design and construction of novel artificial biological pathways and organisms and the redesign of existing natural biological systems, is rapidly expanding the number of applications for which biological systems can play an integral role. In the context of chemical production, the combination of synthetic biology and metabolic engineering approaches continues to unlock the ability to biologically produce novel and complex molecules from a variety of feedstocks. Here, we utilize a synthetic approach to design and build a pathway to produce 2-hydroxyisovaleric acid in Escherichia coli and demonstrate how pathway design can be supplemented with metabolic engineering approaches to improve pathway performance from various carbon sources. Drawing inspiration from the native pathway for the synthesis of the 5-carbon amino acid l-valine, we exploit the decarboxylative condensation of two molecules of pyruvate, with subsequent reduction and dehydration reactions enabling the synthesis of 2-hydroxyisovaleric acid. Key to our approach was the utilization of an acetolactate synthase which minimized kinetic and regulatory constraints to ensure sufficient flux entering the pathway. Critical host modifications enabling maximum product synthesis from either glycerol or glucose were then examined, with the varying degree of reduction of these carbons sources playing a major role in the required host background. Through these engineering efforts, the designed pathway produced 6.2 g/L 2-hydroxyisovaleric acid from glycerol at 58% of maximum theoretical yield and 7.8 g/L 2-hydroxyisovaleric acid from glucose at 73% of maximum theoretical yield. These results demonstrate how the combination of synthetic biology and metabolic engineering approaches can facilitate bio-based chemical production.
Collapse
|
9
|
Marubayashi H, Mizukami R, Hamada Y, Nojima S. Crystallizability of substituted poly(lactic acid)s: Effects of alkyl side-chain structure. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Crystallization of polyesters composed of isohexides and aliphatic dicarboxylic acids: Effects of isohexide stereoisomerism and dicarboxylic acid chain length. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Effect of the different architectures and molecular weights on stereocomplex in enantiomeric polylactides-b-MPEG block copolymers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zhou D, Huang S, Sun J, Bian X, Li G, Chen X. Unique Fractional Crystallization of Poly(l-lactide)/Poly(l-2-hydroxyl-3-methylbutanoic acid) Blend. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongdong Zhou
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoyong Huang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingru Sun
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinchao Bian
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Gao Li
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|