1
|
Li G, Chen J, Yan Z, Wang S, Ke Y, Luo W, Ma H, Guan J, Long Y. Physical crosslinked hydrogel-derived smart windows: anti-freezing and fast thermal responsive performance. MATERIALS HORIZONS 2023; 10:2004-2012. [PMID: 37000535 DOI: 10.1039/d3mh00057e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermochromic hydrogels are versatile smart materials that have many applications, including in smart windows, sensing, camouflage, etc. The previous reports of hydrogel smart windows have been based on covalent crosslinking, requiring multistep processing, and complicated preparation. Moreover, most research studies focused on enhancing the luminous transmittance (Tlum) and modulating ability (ΔTsol), while the structural integrity and antifreezing ability, which are essential in practical applications, have been compromised and rarely investigated. Herein, we develop a new physical (noncovalent crosslinked) hydrogel-derived smart window by introducing an in situ free radical polymerization (FRP) of N-isopropylacrylamide (NIPAM) in a glycerol-water (GW) binary solvent system. The noncovalent crosslinked PNIPAM GW solutions are facilely synthesized, giving outstanding freezing tolerance (∼-18 °C), a comparably high Tlum of 90%, and ΔTsol of 60.8%, together with added advantages of fast response time (∼10 s) and good structural integrity before and after phase transition. This work could provide a new strategy to design and fabricate heat stimulated smart hydrogels not limited to energy saving smart windows.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiwei Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhaonan Yan
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
| | - Shancheng Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yujie Ke
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Yi Long
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China.
| |
Collapse
|
2
|
Zeng Z, Li Z, Li Q, Song G, Huo M. Strong and Tough Nanostructured Hydrogels and Organogels Prepared by Polymerization-Induced Self-Assembly. SMALL METHODS 2023; 7:e2201592. [PMID: 36965093 DOI: 10.1002/smtd.202201592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
In nature, the hierarchical structure of biological tissues endows them with outstanding mechanics and elaborated functions. However, it remains a great challenge to construct biomimetic hydrogels with well-defined nanostructures and good mechanical properties. Herein, polymerization-induced self-assembly (PISA) is for the first time exploited as a general strategy for nanostructured hydrogels and organogels with tailored nanodomains and outstanding mechanical properties. As a proof-of-concept, PISA of BAB triblock copolymer is used to fabricate hydrogels with precisely regulated spherical nanodomains. These nanostructured hydrogels are strong, tough, stretchable, and recoverable, with mechanical properties correlating to their nanostructure. The outstanding mechanical properties are ascribed to the unique network architecture, where the entanglements of the hydrophilic chains act as slip links that transmit the tension to the micellar crosslinkers, while the micellar crosslinkers dissipate the energy via reversible deformation and irreversible detachment of the constituting polymers. The general feasibility of the PISA strategy toward nanostructured gels is confirmed by the successful fabrication of nanostructured hydrogels, alcogels, poly(ethylene glycol) gels, and ionogels with various PISA formulations. This work has provided a general platform for the design and fabrication of biomimetic hydrogels and organogels with tailorable nanostructures and mechanics and will inspire the design of functional nanostructured gels.
Collapse
Affiliation(s)
- Zhong Zeng
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Ziyun Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Qili Li
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Guangjie Song
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Meng Huo
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
3
|
Guan X, Ding Y, Lai S, Yang X, Wei J, Zhang J, Zhang L, Wang K, Tong J, Li C. Nonconjugated fluorescent polymer nanoparticles by self-assembly of PIMA-g-β-CD for live-cell long-term tracking. Carbohydr Polym 2022; 291:119633. [DOI: 10.1016/j.carbpol.2022.119633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/24/2022]
|
4
|
Wen L, Yan T, xiao Y, Xia W, Li X, Guo C, Lang M. A hypothermia-sensitive micelle with controlled release of hydrogen sulfide for protection against anoxia/reoxygenation-induced cardiomyocyte injury. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
6
|
Effect of the macromolecular architecture on the thermoresponsive behavior of poly(N-isopropylacrylamide) in copolymers with poly(N,N-dimethylacrylamide) in aqueous solutions: Block vs random copolymers. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Arjmand F, Mohamadnia Z. Fabrication of a light-responsive polymer nanocomposite containing spiropyran as a sensor for reversible recognition of metal ions. Polym Chem 2022. [DOI: 10.1039/d1py01620b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(spiropyran ethylacrylate-co-glycidyl methacrylate) grafted onto the surface of modified TiO2 (TiO2-g-P(SPEA-co-GMA)) as a novel stimuli-responsive polymer was fabricated and employed as sensor for reversible recognition of metal ions.
Collapse
Affiliation(s)
- Fakhri Arjmand
- Polymer Research Laboratory, Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Zahra Mohamadnia
- Polymer Research Laboratory, Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| |
Collapse
|
8
|
Luo X, Zhang K, Zeng R, Chen Y, Zhang L, Tan J. Segmented Copolymers Synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization Using an Asymmetric Difunctional RAFT Agent and the Utilization in RAFT-Mediated Dispersion Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyi Luo
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Kunlun Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Zeng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
9
|
Chen Z, Gai Y, Xie W, Guo H, Deng W, Li F, Jiang F. A rapid and effective synthetic route to functional cuboctahedron nanospheres. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. How the Reactive End Group of Macro-RAFT Agent Affects RAFT-Mediated Emulsion Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2021; 42:e2100333. [PMID: 34219313 DOI: 10.1002/marc.202100333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Polymerization-induced self-assembly via reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization is an emerging method in which macro-RAFT agents are chain extended with hydrophobic monomers in water to form block copolymer nano-objects. However, almost all RAFT-mediated emulsion polymerizations are limited to AB diblock copolymers by using monofunctional macro-RAFT agents with non-reactive end groups. In this study, the first investigation on how the reactive end group of macro-RAFT agent affects RAFT-mediated emulsion polymerization is reported. Three macro-RAFT agents with different end groups are synthesized and employed in RAFT-mediated emulsion polymerization. Effects of end groups on morphologies of block copolymer nano-objects and polymerization process are studied. Block copolymer nano-objects prepared by using an asymmetric difunctional macro-RAFT agent can be functionalized by further chain extension on the surface. It is expected that the current study will not only expand the scope of RAFT-mediated emulsion polymerization, but also provide a novel strategy to prepare functional polymer nanoparticles.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
11
|
Biais P, Engel M, Colombani O, Nicolai T, Stoffelbach F, Rieger J. Thermoresponsive dynamic BAB block copolymer networks synthesized by aqueous PISA in one-pot. Polym Chem 2021. [DOI: 10.1039/d0py01424a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of neutral hydrophilic monomer units in the hydrophobic B blocks of BAB copolymers produces transient networks exhibiting a thermoresponsive behavior with a maximum of viscosity in water.
Collapse
Affiliation(s)
- Pauline Biais
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- Polymer Chemistry Team
| | - Marie Engel
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- Polymer Chemistry Team
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - Taco Nicolai
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS Le Mans Université
- 72085 Le Mans Cedex 9
- France
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- Polymer Chemistry Team
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- Polymer Chemistry Team
| |
Collapse
|
12
|
Lai S, Wang K, Liu M, Tong J, Guan X. Unorthodox β-Cyclodextrin-Based AIE-Active Probes for Living Cell Imaging in the Absence of Fluorophore Units and Related Mechanism Exploration. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shoujun Lai
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, Gansu 730000, P.R. China
| | - Kailong Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Meina Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Jinhui Tong
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
13
|
|
14
|
Biais P, Colombani O, Bouteiller L, Stoffelbach F, Rieger J. Unravelling the formation of BAB block copolymer assemblies during PISA in water. Polym Chem 2020. [DOI: 10.1039/d0py00422g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BAB triblock copolymers prepared by PISA in water self-assemble into a transient network of bridged micelles. The slowdown of the exchange of B blocks between micelles during PISA is highlighted as well as the parameters affecting the polymerization.
Collapse
Affiliation(s)
- Pauline Biais
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- 75252 Paris Cedex 05
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM)
- UMR 6283 CNRS Le Mans Université
- Avenue Olivier Messiaen
- 72085 Le Mans Cedex 9
- France
| | - Laurent Bouteiller
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- 75252 Paris Cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- 75252 Paris Cedex 05
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- Institut Parisien de Chimie Moléculaire
- UMR 8232
- 75252 Paris Cedex 05
| |
Collapse
|
15
|
Qian S, Liu R, Han G, Shi K, Zhang W. Star amphiphilic block copolymers: synthesis via polymerization-induced self-assembly and crosslinking within nanoparticles, and solution and interfacial properties. Polym Chem 2020. [DOI: 10.1039/c9py01656b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The star amphiphilic block copolymer of star s-PNIPAM-b-PS is synthesized and it shows characteristics significantly different from those of the linear block copolymer counterpart.
Collapse
Affiliation(s)
- Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Rui Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Keyu Shi
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
16
|
Hou Y, Guo Y, Qian S, Khan H, Han G, Zhang W. A new thermoresponsive polymer of poly(N-acetoxylethyl acrylamide). POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Qian S, Li S, Xiong W, Khan H, Huang J, Zhang W. A new visible light and temperature responsive diblock copolymer. Polym Chem 2019. [DOI: 10.1039/c9py01050e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A visible light and temperature responsive diblock copolymer of poly[6-(2,6,2′,6′-tetramethoxy-4′-oxyazobenzene) hexyl methacrylate]-block-poly(N-isopropylacrylamide) (PmAzo-b-PNIPAM) was synthesized via RAFT polymerization by carefully tuning the polymerization conditions.
Collapse
Affiliation(s)
- Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Weifeng Xiong
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jing Huang
- Sinopec Research Institute of Petroleum Engineering
- Beijing
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
18
|
Cao M, Nie H, Hou Y, Han G, Zhang W. Synthesis of star thermoresponsive amphiphilic block copolymer nano-assemblies and the effect of topology on their thermoresponse. Polym Chem 2019. [DOI: 10.1039/c8py01617h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Well-defined multi-arm star thermoresponsive block copolymer nano-assemblies of [poly(N-isopropylacrylamide)-block-polystyrene]n [(PNIPAM-b-PS)n] with n = 1, 2, 3 and 4 arms were synthesized by RAFT dispersion polymerization via polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Mengjiao Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuwen Hou
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
19
|
Fang C, Wang X, Chen X, Wang Z. Mild synthesis of environment-friendly thermoplastic triblock copolymer elastomers through combination of ring-opening and RAFT polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00654k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environment-friendly thermoplastic triblock copolymer elastomers, polylactide-block-polyisoprene-block-polylactide, were synthesized by a mild ROP and RAFT method.
Collapse
Affiliation(s)
- Chu Fang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xuehui Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Zhigang Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
20
|
Zhang Q, He Y, Oliver AM, Pearce S, Harniman RL, Whittell GR, Liu Y, Du S, Leng J, Manners I. Low length dispersity fiber-like micelles from an A–B–A triblock copolymer with terminal crystallizable poly(ferrocenyldimethylsilane) segments via living crystallization-driven self-assembly. Polym Chem 2019. [DOI: 10.1039/c9py00401g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uniform cylindrical micelles with coronas in a looped configuration have been prepared.
Collapse
Affiliation(s)
- Qiwei Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
- Harbin Institute of Technology
- Harbin Institute of Technology
- Harbin 150080
- China
| | - Yunxiang He
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| | - Alex M. Oliver
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| | - Samuel Pearce
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| | | | | | - Yanju Liu
- Department of Astronautical Science and Mechanics
- Harbin Institute of Technology
- Harbin 150080
- China
| | - Shanyi Du
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
- Harbin Institute of Technology
- Harbin Institute of Technology
- Harbin 150080
- China
| | - Jinsong Leng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments
- Harbin Institute of Technology
- Harbin Institute of Technology
- Harbin 150080
- China
| | - Ian Manners
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
- Department of Chemistry
| |
Collapse
|
21
|
Itoh T, Kojima K, Shimomoto H, Ihara E. Control of lengths and densities of surface-attached chains on polymer particles prepared by dispersion polymerization using macromonomer stabilizer. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Yuan B, Ding M, Duan W, Cao M, Shi K, Zhang W. Thermoresponsive hydrogels with high elasticity and rapid response synthesized by RAFT polymerization via special crosslinking. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Zhang Y, Cao M, Han G, Guo T, Ying T, Zhang W. Topology Affecting Block Copolymer Nanoassemblies: Linear Block Copolymers versus Star Block Copolymers under PISA Conditions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01121] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 100123, China
| | | | - Tengyuan Ying
- Institute of Semiconductor
Technology of Tianjin, Tianjin, China
| | | |
Collapse
|
24
|
He J, Xu Q, Tan J, Zhang L. Ketone-Functionalized Polymer Nano-Objects Prepared via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) Using a Poly(diacetone acrylamide)-Based Macro-RAFT Agent. Macromol Rapid Commun 2018; 40:e1800296. [DOI: 10.1002/marc.201800296] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jun He
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Qin Xu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou 510006 China
| |
Collapse
|
25
|
Mellot G, Beaunier P, Guigner JM, Bouteiller L, Rieger J, Stoffelbach F. Beyond Simple AB Diblock Copolymers: Application of Bifunctional and Trifunctional RAFT Agents to PISA in Water. Macromol Rapid Commun 2018; 40:e1800315. [DOI: 10.1002/marc.201800315] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gaëlle Mellot
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; Equipe chimie des polymères; F-75252 Paris Cedex 05 France
| | - Patricia Beaunier
- Sorbonne Université; CNRS; Laboratoire de Réactivité de Surface; UMR 7197 F-75252 Paris Cedex 05 France
| | - Jean-Michel Guigner
- Sorbonne Université; CNRS; Institut de Minéralogie; de Physique des Matériaux et de Cosmochimie; UMR 7590 - IRD - MNHN F-75005 Paris France
| | - Laurent Bouteiller
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; Equipe chimie des polymères; F-75252 Paris Cedex 05 France
| | - Jutta Rieger
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; Equipe chimie des polymères; F-75252 Paris Cedex 05 France
| | - François Stoffelbach
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; Equipe chimie des polymères; F-75252 Paris Cedex 05 France
| |
Collapse
|
26
|
Chain terminal group leads to distinct thermoresponsive behaviors of linear PNIPAM and polymer analogs. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
He J, Liu D, Tan J, Zhang L. Sodium Bis(acyl)phosphane oxide (SBAPO): An efficient photoinitiator for blue light initiated aqueous RAFT dispersion polymerization. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Rodríguez-Hidalgo MDR, Soto-Figueroa C, Vicente L. Study of structural morphologies of thermoresponsive diblock AB and triblock BAB copolymers (A = poly(N-isopropylacrylamide), B = polystyrene). Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Biais P, Beaunier P, Stoffelbach F, Rieger J. Loop-stabilized BAB triblock copolymer morphologies by PISA in water. Polym Chem 2018. [DOI: 10.1039/c8py00914g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Assemblies of BAB triblock copolymers are prepared by PISA via aqueous RAFT dispersion polymerization. The importance of charges in the middle of the hydrophilic stabilizer loops is highlighted.
Collapse
Affiliation(s)
- Pauline Biais
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| | - Patricia Beaunier
- Sorbonne Université
- CNRS
- UMR 7197
- Laboratoire de Réactivité de Surface (LRS)
- 75252 Paris Cedex 05
| | - François Stoffelbach
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| | - Jutta Rieger
- Sorbonne Université
- CNRS
- UMR 8232
- Institut Parisien de Chimie Moléculaire (IPCM)
- 75252 Paris Cedex 05
| |
Collapse
|
30
|
Pietrasik J, Budzałek K, Zhang Y, Hałagan K, Kozanecki M. Macromolecular Templates for Synthesis of Inorganic Nanoparticles. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1285.ch010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Joanna Pietrasik
- Institute of Polymer and Dye Technology, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| | - Katarzyna Budzałek
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| | - Yaoming Zhang
- Institute of Polymer and Dye Technology, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| | - Krzysztof Hałagan
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| | - Marcin Kozanecki
- Department of Molecular Physics, Lodz University of Technology, Zeromskiego 116, 90 924 Lodz, Poland
| |
Collapse
|
31
|
Steinschulte AA, Scotti A, Rahimi K, Nevskyi O, Oppermann A, Schneider S, Bochenek S, Schulte MF, Geisel K, Jansen F, Jung A, Mallmann S, Winter R, Richtering W, Wöll D, Schweins R, Warren NJ, Plamper FA. Stimulated Transitions of Directed Nonequilibrium Self-Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703495. [PMID: 29024083 DOI: 10.1002/adma.201703495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Near-equilibrium stimulus-responsive polymers have been used extensively to introduce morphological variations in dependence of adaptable conditions. Far-less-well studied are triggered transformations at constant conditions. These require the involvement of metastable states, which are either able to approach the equilibrium state after deviation from metastability or can be frozen on returning from nonequilibrium to equilibrium. Such functional nonequilibrium macromolecular systems hold great promise for on-demand transformations, which result in substantial changes in their material properties, as seen for triggered gelations. Herein, a diblock copolymer system consisting of a hydrophilic block and a block that is responsive to both pressure and temperature, is introduced. This species demonstrates various micellar transformations upon leaving equilibrium/nonequilibrium states, which are triggered by a temperature deflection or a temporary application of hydrostatic pressure.
Collapse
Affiliation(s)
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Khosrow Rahimi
- DWI Leibniz Institute for Interactive Materials and Center for Chemical Polymer Technology (CPT), Forckenbeckstr. 50, D-52074, Aachen, Germany
| | - Oleksii Nevskyi
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Alex Oppermann
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Sabine Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Marie F Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Karen Geisel
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Felicitas Jansen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Andre Jung
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Sabrina Mallmann
- DWI Leibniz Institute for Interactive Materials and Center for Chemical Polymer Technology (CPT), Forckenbeckstr. 50, D-52074, Aachen, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I, TU Dortmund University, Otto-Hahn Str. 6, D-44227, Dortmund, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Ralf Schweins
- Institut Laue-Langevin ILL, DS/LSS, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Felix A Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| |
Collapse
|
32
|
Ding Z, Ding M, Gao C, Boyer C, Zhang W. In Situ Synthesis of Coil–Coil Diblock Copolymer Nanotubes and Tubular Ag/Polymer Nanocomposites by RAFT Dispersion Polymerization in Poly(ethylene glycol). Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01363] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Cyrille Boyer
- Centre
for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
33
|
Li P, Zhang Z, Su Z, Wei G. Thermosensitive polymeric micelles based on the triblock copolymer poly(d,l
-lactide)-b
-poly(N
-isopropyl acrylamide)-b
-poly(d,l
-lactide) for controllable drug delivery. J Appl Polym Sci 2017. [DOI: 10.1002/app.45304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peng Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology; Beijing 100029 China
| | - Zhenfang Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology; Beijing 100029 China
| | - Zhiqiang Su
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology; Beijing 100029 China
| | - Gang Wei
- Faculty of Production Engineering; University of Bremen; Bremen D-28359 Germany
| |
Collapse
|
34
|
Zhang WJ, Hong CY, Pan CY. Efficient Fabrication of Photosensitive Polymeric Nano-objects via an Ingenious Formulation of RAFT Dispersion Polymerization and Their Application for Drug Delivery. Biomacromolecules 2017; 18:1210-1217. [DOI: 10.1021/acs.biomac.6b01887] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wen-Jian Zhang
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft
Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Chen SL, Shi PF, Zhang WQ. In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1907-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Liu H, Ding M, Ding Z, Gao C, Zhang W. In situ synthesis of the Ag/poly(4-vinylpyridine)-block-polystyrene composite nanoparticles by dispersion RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00473g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new method for the synthesis of metal/block-copolymer nanocomposites of poly(4-vinylpyridine)-b-polystyrene (P4VP-b-PS) and Ag nanoparticles by dispersion RAFT polymerization is proposed.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Mingdu Ding
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Zhonglin Ding
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
37
|
Zhang Y, Cao M, Yuan B, Guo T, Zhang W. RAFT synthesis and micellization of a photo-, temperature- and pH-responsive diblock copolymer based on spiropyran. Polym Chem 2017. [DOI: 10.1039/c7py01714f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photo-, temperature- and pH-responsive diblock copolymer containing a rigid spiropyran moiety was synthesized and its micellization was investigated.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Mengjiao Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Bing Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
38
|
Tan J, Liu D, Bai Y, Huang C, Li X, He J, Xu Q, Zhang X, Zhang L. An insight into aqueous photoinitiated polymerization-induced self-assembly (photo-PISA) for the preparation of diblock copolymer nano-objects. Polym Chem 2017. [DOI: 10.1039/c6py02135b] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoinitiated polymerization-induced self-assembly (photo-PISA) is utilized to investigate the sole effect of reaction temperature on PISA.
Collapse
Affiliation(s)
- Jianbo Tan
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Yuhao Bai
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Chundong Huang
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Xueliang Li
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Jun He
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Qin Xu
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Xuechao Zhang
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Li Zhang
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| |
Collapse
|
39
|
Qu Y, Chang X, Chen S, Zhang W. In situ synthesis of thermoresponsive 4-arm star block copolymer nano-assemblies by dispersion RAFT polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00508c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thermoresponsive 4-arm star block copolymer nano-assemblies were synthesized, and their interesting thermoresponse was investigated.
Collapse
Affiliation(s)
- Yaqing Qu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xueying Chang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Shengli Chen
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
40
|
Blackman LD, Gibson MI, O'Reilly RK. Probing the causes of thermal hysteresis using tunable Nagg micelles with linear and brush-like thermoresponsive coronas. Polym Chem 2017; 8:233-244. [PMID: 28496523 PMCID: PMC5361139 DOI: 10.1039/c6py01191h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022]
Abstract
Self-assembled thermoresponsive polymers in aqueous solution have great potential as smart, switchable materials for use in biomedical applications. In recent years, attention has turned to the reversibility of these polymers' thermal transitions, which has led to debate over what factors influence discrepancies in the transition temperature when heating the system compared to the temperature obtained when cooling the system, known as the thermal hysteresis. Herein, we synthesize micelles with tunable aggregation numbers (Nagg) whose cores contain poly(n-butyl acrylate-co-N,N-dimethylacrylamide) (p(nBA-co-DMA)) and four different thermoresponsive corona blocks, namely poly(N-isopropylacrylamide) (pNIPAM), poly(N,N-diethylacrylamide) (pDEAm), poly(diethylene glycol monomethyl ether methacrylate) (pDEGMA) and poly(oligo(ethylene glycol) monomethyl ether methacrylate) (pOEGMA). By studying their thermoresponsive behavior, we elucidate the effects of changing numerous important characteristics both in the thermoresponsive chain chemistry and architecture, and in the structure of their self-assemblies. Our findings demonstrate large deviations in the reversibility between the self-assemblies and the corresponding thermoresponsive homopolymers; specifically we find that micelles whose corona consist of polymers with a brush-like architecture (pDEGMA and pOEGMA) exhibit irreversible phase transitions at a critical chain density. These results lead to a deeper understanding of stimuli-responsive self-assemblies and demonstrate the potential of tunable Nagg micelles for uncovering structure-property relationships in responsive polymer systems.
Collapse
Affiliation(s)
- L D Blackman
- Dept. of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - M I Gibson
- Dept. of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
- Warwick Medical School , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| | - R K O'Reilly
- Dept. of Chemistry , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
| |
Collapse
|
41
|
Tan J, Bai Y, Zhang X, Huang C, Liu D, Zhang L. Low-Temperature Synthesis of Thermoresponsive Diblock Copolymer Nano-Objects via Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) using Thermoresponsive Macro-RAFT Agents. Macromol Rapid Commun 2016; 37:1434-40. [DOI: 10.1002/marc.201600299] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| | - Yuhao Bai
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Xuechao Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Chundong Huang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| |
Collapse
|
42
|
Jennings J, He G, Howdle SM, Zetterlund PB. Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems. Chem Soc Rev 2016; 45:5055-84. [DOI: 10.1039/c6cs00253f] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We review the range of CLRP-controlled syntheses of block copolymer particles in dispersed systems, which are being exploited to create new opportunities for the design of nanostructured soft materials.
Collapse
Affiliation(s)
- J. Jennings
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
- Department of Chemistry
| | - G. He
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - S. M. Howdle
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - P. B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|