1
|
Zhang Q, Pei Z, Song AY, Qi M, Khoo RSH, Yang C, Xia T, Zhou C, Mao H, Huang Z, Lai S, Wang Y, Tan LZ, Reimer JA, Zhang J, Coote ML, Liu Y. Manipulating Aromaticity to Redirect Topochemical Polymerization Pathways. J Am Chem Soc 2025; 147:14715-14724. [PMID: 40232681 DOI: 10.1021/jacs.5c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Topochemical polymerization (TCP) represents an essential route to create regio- and stereoregular polymers through solid-state transformations. Herein, we present an innovative strategy for controlling topochemical polymerization pathways by tailoring the terminal group aromaticity in the para-azaquinodimethane (AQM) ring system. Substituting phenyl groups with less aromatic furyl units extends significant spin density delocalization across the conjugated core upon thermal activation, inducing significant diradicaloid characters at furyl positions and enabling unconventional reactivities in both solution and solid states. Thermal treatment in toluene yields a unique cyclophane dimer formed via furyl-methine C-C coupling, confirmed by X-ray crystallography, while solid-state reactions produce polymers formed via both intercolumnar furyl-methine coupling and intracolumnar methine-methine coupling. The spin-center-directed mechanism underlying these transformations is validated through theoretical modeling and isotopic labeling experiments. This study highlights the prowess of aromaticity modulation in functional pro-aromatic systems, which enables the synthesis of polymers with main chain structures that are otherwise difficult to access.
Collapse
Affiliation(s)
- Qingsong Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhipeng Pei
- Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, SA 5042, Australia
| | - Ah-Young Song
- College of Chemistry Pines Magnetic Resonance Center, University of California, Berkeley, Berkeley, California 94720, United States
| | - Miao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tao Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhiyuan Huang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shiqi Lai
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, SA 5042, Australia
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Itoh T, Kondo F, Suzuki T, Inayoshi K, Uno T, Kubo M, Tohnai N, Miyata M. Elucidation of Substituent-Responsive Reactivities via Hierarchical and Asymmetric Assemblies in Crystalline p-Quinodimethane Derivatives. Chemistry 2023; 29:e202301327. [PMID: 37439484 DOI: 10.1002/chem.202301327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
We propose a mechanism for substituent-responsive reactivities of p-quinodimethane derivatives with four ester groups through their hierarchical and asymmetric assembly modes. Four asymmetric 7,8,8-tris(methoxycarbonyl)-p-quinodimethanes with a 7-positioned ethoxycarbonyl (2 a(H)), 2'-fluoroethoxycarbonyl (2 b(F)), 2'-chloroethoxycarbonyl (2 c(Cl)), or 2'-bromoethoxycarbonyl (2 d(Br)) were synthesized and crystallized. 2 a(H), 2 b(F) and 2 d(Br) afforded only one shape crystal, while 2 c(Cl) did two polymorphic 2 c(Cl)-α and 2 c(Cl)-β. UV-irradiation induced topochemical polymerization for 2 a(H), no reactions for 2 b(F) and 2 c(Cl)-α, and [6+6] photocycloaddition dimerization for 2 c(Cl)-β and 2 d(Br). Such substituent-responsive reactivities and crystal structures were compared with those of the known symmetric 7,7,8,8-tetrakis(alkoxycarbonyl)-p-quinodimethanes such as 7,7,8,8-tetrakis(methoxycarbonyl)- (1 a(Me)-α and 1 a(Me)-β), 7,7,8,8-tetrakis(ethoxycarbonyl)- (1 b(Et)), and 7,7,8,8-tetrakis(bromoethoxycarbonyl)- (1 c(BrEt)). The comparative study clarified that the reactivities and crystal structures are classified into four types that link to each other. This linkage is understandable when we analyze the crystal structures through the following hierarchical and asymmetric assemblies; conformers, dimers, one dimensional (1D)-columns, two dimensional (2D)-sheets, and three dimensional (3D)-stacked sheets (3D-crystals). This supramolecular viewpoint is supported by intermolecular interaction energies among neighbored molecules with the density functional theory (DFT) calculation. Such research enables us to elucidate the substituent-responsive reactivities of the crystals, and reminds us of the selection of the right path in a so-called "maze game".
Collapse
Affiliation(s)
- Takahito Itoh
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Fumiaki Kondo
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Takumi Suzuki
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Kohji Inayoshi
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Takahiro Uno
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Masataka Kubo
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu-shi, Mie, 514-8507, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mikiji Miyata
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
3
|
Anderson CL, Li H, Jones CG, Teat SJ, Settineri NS, Dailing EA, Liang J, Mao H, Yang C, Klivansky LM, Li X, Reimer JA, Nelson HM, Liu Y. Solution-processable and functionalizable ultra-high molecular weight polymers via topochemical synthesis. Nat Commun 2021; 12:6818. [PMID: 34819494 PMCID: PMC8613210 DOI: 10.1038/s41467-021-27090-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/01/2021] [Indexed: 01/25/2023] Open
Abstract
Topochemical polymerization reactions hold the promise of producing ultra-high molecular weight crystalline polymers. However, the totality of topochemical polymerization reactions has failed to produce ultra-high molecular weight polymers that are both soluble and display variable functionality, which are restrained by the crystal-packing and reactivity requirements on their respective monomers in the solid state. Herein, we demonstrate the topochemical polymerization reaction of a family of para-azaquinodimethane compounds that undergo facile visible light and thermally initiated polymerization in the solid state, allowing for the first determination of a topochemical polymer crystal structure resolved via the cryoelectron microscopy technique of microcrystal electron diffraction. The topochemical polymerization reaction also displays excellent functional group tolerance, accommodating both solubilizing side chains and reactive groups that allow for post-polymerization functionalization. The thus-produced soluble ultra-high molecular weight polymers display superior capacitive energy storage properties. This study overcomes several synthetic and characterization challenges amongst topochemical polymerization reactions, representing a critical step toward their broader application.
Collapse
Affiliation(s)
- Christopher L Anderson
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - He Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Christopher G Jones
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Nicholas S Settineri
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Eric A Dailing
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jiatao Liang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Liana M Klivansky
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Xinle Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Hosea M Nelson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Hema K, Ravi A, Raju C, Pathan JR, Rai R, Sureshan KM. Topochemical polymerizations for the solid-state synthesis of organic polymers. Chem Soc Rev 2021; 50:4062-4099. [PMID: 33543741 DOI: 10.1039/d0cs00840k] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Topochemical polymerizations are solid-state reactions driven by the alignment of monomers in the crystalline state. The molecular confinement in the monomer crystal lattice offers precise control over the tacticity, packing and crystallinity of the polymer formed in the topochemical reaction. As topochemical reactions occur under solvent- and catalyst-free conditions, giving products in high yield and selectivity/specificity that do not require tedious chromatographic purification, topochemical polymerizations are highly attractive over traditional solution-phase polymer synthesis. By this method, polymers having sophisticated structures and desired topologies can be availed. Often, such ordered packing confers attractive properties to the topochemically-synthesized polymers. Diverse categories of topochemical polymerizations are known, such as polymerizations via [2+2], [4+4], [4+2], and [3+2] cycloadditions, and polymerization of diynes, triynes, dienes, trienes, and quinodimethanes, each of which proceed under suitable stimuli like heat, light or pressure. Each class of these reactions requires a unique packing arrangement of the corresponding monomers for the smooth reaction and produces polymers with distinct properties. This review is penned with the intent of bringing all the types of topochemical polymerizations into a single platform and communicating the versatility of these lattice-controlled polymerizations. We present a brief history of the development of each category and comprehensively review the topochemical synthesis of fully-organic polymers reported in the last twenty years, particularly in crystals. We mainly focus on the various molecular designs and crystal engineering strategies adopted to align monomers in a suitable orientation for polymerization. Finally, we analyze the current challenges and future perspectives in this research field.
Collapse
Affiliation(s)
- Kuntrapakam Hema
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Arthi Ravi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Cijil Raju
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Javed R Pathan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Rishika Rai
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
5
|
Tseng CW, Huang DC, Yang HL, Lin HC, Li FC, Pao CW, Tao YT. Self-Assembly Behavior of Diacetylenic Acid Molecules upon Vapor Deposition: Odd-Even Effect on the Film Morphology. Chemistry 2020; 26:13948-13956. [PMID: 32666566 DOI: 10.1002/chem.202002227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/10/2020] [Indexed: 11/06/2022]
Abstract
A series of linear carboxylic acids containing diacetylenic units at different positions along the chain (C12 H25 (C≡C)2 (CH2 )n COOH, n=7-11) were vacuum-deposited on clean silica substrates. The morphologies of the initial films after UV irradiation were studied. A clear odd-even effect on the morphology of the initial film was observed in that, depending on the spacer length between the diacetylenic unit and carboxyl head group, rings or dendrites of acid dimer layers were obtained. A molecular dynamic simulation of the aggregation process suggests that two competing intermolecular interactions and thus aggregation directions are involved and modulated by the odd or even carbon chain length. Further modulation of the interaction by substitution of a phenyl group at the terminus of the chain or by changing the carboxyl head group to an amidobenzoic acid head group led to a similar odd-even effect but with different dimensions or trends, which can be rationalized similarly. These results give the opportunity to create aligned conjugated polymer chains of different dimensions through self-assembly for applications in molecular/organic electronics.
Collapse
Affiliation(s)
- Chiao-Wei Tseng
- Institute of Chemistry, Academia Sinica, Taipei, 11521, Taiwan
| | - Ding-Chi Huang
- Institute of Chemistry, Academia Sinica, Taipei, 11521, Taiwan
| | - Han-Li Yang
- Institute of Chemistry, Academia Sinica, Taipei, 11521, Taiwan
| | - Hsieh-Cheng Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 11521, Taiwan
| | - Fang-Cheng Li
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11521, Taiwan
| | - Chun-Wei Pao
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11521, Taiwan
| | - Yu-Tai Tao
- Institute of Chemistry, Academia Sinica, Taipei, 11521, Taiwan
| |
Collapse
|
6
|
Topochemical synthesis of different polymorphs of polymers as a paradigm for tuning properties of polymers. Nat Commun 2020; 11:865. [PMID: 32054844 PMCID: PMC7018732 DOI: 10.1038/s41467-020-14733-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Different packing is a mechanism through which nature can produce materials of different properties from the same basic units. There is great interest in constructing different forms of the same polymer by utilising different packing. Common solution-synthesized polymers are amorphous and their post-synthesis crystallization into different topologies is almost impossible. Here we show solid-state polymerization of different reactive polymorphs of a monomer pre-organized in different topologies. Trimorphs of a dipeptide monomer pack in a head-to-tail fashion, placing the azide and alkyne of adjacent monomers in proximity. On heating, these crystals undergo a topochemical azide-alkyne cycloaddition reaction yielding triazole-linked polymer in three different crystalline states; one with antiparallel arrangement of polymer chains, another with parallelly oriented chains, and a third form containing a 1:1 blend of two different conformers aligned in parallel. This approach of exploiting different polymorphs of a monomer for topochemical polymerization to yield polymorphs of polymers is promising for future research.
Collapse
|
7
|
Hema K, Gonnade RG, Sureshan KM. Crystal‐to‐Crystal Synthesis of Helically Ordered Polymers of Trehalose by Topochemical Polymerization. Angew Chem Int Ed Engl 2020; 59:2897-2903. [DOI: 10.1002/anie.201914164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Kuntrapakam Hema
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Rajesh G. Gonnade
- Physics and Materials Chemistry DivisionNational Chemical Laboratory Pune 411008 India
| | - Kana M. Sureshan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
8
|
Bundle assemblies formation of alternating copolymer: Alternating copolymerization of symmetrical substituted p-quinodimethanes with asymmetrical N,7,7-tricyanoquinone methide imine in solid state. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Hema K, Gonnade RG, Sureshan KM. Crystal‐to‐Crystal Synthesis of Helically Ordered Polymers of Trehalose by Topochemical Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kuntrapakam Hema
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| | - Rajesh G. Gonnade
- Physics and Materials Chemistry DivisionNational Chemical Laboratory Pune 411008 India
| | - Kana M. Sureshan
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram Kerala 695551 India
| |
Collapse
|