1
|
Honaryar H, Amirfattahi S, Nguyen D, Kim K, Shillcock JC, Niroobakhsh Z. A Versatile Approach to Stabilize Liquid-Liquid Interfaces using Surfactant Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403013. [PMID: 38874067 DOI: 10.1002/smll.202403013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water-oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid-in-liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid-liquid interfaces not only offers unprecedented opportunities for fine-tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self-healing, and porosity, which could have significant implications for various industries.
Collapse
Affiliation(s)
- Houman Honaryar
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Saba Amirfattahi
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Duoc Nguyen
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Kyungtae Kim
- Materials Physics and Applications Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Julian C Shillcock
- Laboratory for Biomolecular Modeling, École Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Blue Brain Project, École Polytechnique Federale de Lausanne (EPFL), Campus Biotech, Geneva, CH-1202, Switzerland
| | - Zahra Niroobakhsh
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| |
Collapse
|
2
|
Zhu Q, Tree DR. Simulations of morphology control of self‐assembled amphiphilic surfactants. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Qinyu Zhu
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| | - Douglas R. Tree
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| |
Collapse
|
3
|
Computing dissipative particle dynamics interactions to render molecular structure and temperature-dependent properties of simple liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Lu Y, Liu XY, Hu GH. Double-Spring Model for Nanoparticle Diffusion in a Polymer Network. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Lu
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Xin-Yue Liu
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Guo-Hui Hu
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
5
|
Feng W, Wang L, Lin S. Self-assembly of sequence-regulated amphiphilic copolymers with alternating rod and coil pendants. SOFT MATTER 2022; 18:3910-3916. [PMID: 35536292 DOI: 10.1039/d2sm00241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We conducted a computational study on the self-assembly behavior of sequence-controlled amphiphilic copolymers with alternating rod and coil pendants. Complex self-assembled morphologies, such as onion-like vesicles with two layers, can be generated by introducing rod pendants. The amphiphilic alternating copolymers self-assemble into onion-like vesicles through a fusion process of tiny micelles and a bending operation of disk-like micelles with double layers. A stimuli-responsive simulation shows that the cylindrical vesicles can transform into onion-like vesicles by a rod-to-coil conformation transition of rigid pendants. Inspired by this finding, we conducted a drug-loading simulation by adding two reactive drugs at different stages and found that the onion-like vesicles can almost completely isolate two drugs. This work provides theoretical guidance on the self-assembly of amphiphilic alternating copolymers with rod and coil pendants for future experimental design.
Collapse
Affiliation(s)
- Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Simulation study on the effects of the self-assembly of nanoparticles on thermal conductivity of nanofluids. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Playing construction with the monomer toy box for the synthesis of multi‐stimuli responsive copolymers by reversible deactivation radical polymerization protocols. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Song X, Zhou J, Qiao C, Xu X, Zhao S, Liu H. Engulfing Behavior of Nanoparticles into Thermoresponsive Microgels: A Mesoscopic Simulation Study. J Phys Chem B 2021; 125:2994-3004. [PMID: 33720720 DOI: 10.1021/acs.jpcb.1c00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The engulfing of nanoparticles into microgels provides a versatile platform to design nano- and microstructured materials with various shape anisotropies and multifunctional properties. Manipulating the spontaneous engulfment process remains elusive. Herein, we report a mesoscopic simulation study on the engulfing behavior of nanoparticles into thermoresponsive microgels. The effects of the multiple parameters, including binding strength, temperature, and nanoparticle size, are examined systematically. Our simulation results disclose three engulfing states at different temperatures, namely full-engulfing, half-engulfing, and surface contact. The engulfing depth is determined by the complementary balance of interfacial elastocapillarity. Specifically, the van der Waals interaction of hybrid microgel-nanoparticle offers the capillary force while the internally networked structure of microgel reinforces the elasticity repulsion. Our study, validated by relevant experimental results, provides a mechanistic understanding of the interfacial elastocapillarity for nanoparticle-microgels.
Collapse
Affiliation(s)
- Xianyu Song
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404020, China
| | - Jianzhuang Zhou
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chongzhi Qiao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Lv Y, Wang L, Liu F, Feng W, Wei J, Lin S. Rod-coil block copolymer aggregates via polymerization-induced self-assembly. SOFT MATTER 2020; 16:3466-3475. [PMID: 32207755 DOI: 10.1039/d0sm00244e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymerization-induced self-assembly (PISA), incorporating the polymerization with in situ self-assembly, can achieve nano-objects efficiently. However, the cooperative polymerization and self-assembly lead to unclear polymerization kinetics and aggregation behavior, especially for the systems forming rigid chains. Here, we used dissipative particle dynamics simulations with a probability-based reaction model to explore the PISA behavior of rod-coil block copolymer systems. The impact of the length of macromolecular initiators, the targeted length of rigid chains, and the reaction probability on the PISA behavior, including polymerization kinetics and self-assembly, were examined. The difference between PISA and traditional self-assembly was revealed. A comparison with experimental observations shows that the simulation can capture the essential feature of the PISA. The present work provides a comprehensive understanding of rod-coil PISA systems and may provide meaningful information for future experimental research.
Collapse
Affiliation(s)
- Yisheng Lv
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
10
|
Lv Y, Wang L, Liu F, Feng W, Wei J, Lin S. Self-assembly of amphiphilic alternating copolymers with stimuli-responsive rigid pendant groups. Polym Chem 2020. [DOI: 10.1039/d0py00765j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amphiphilic alternating copolymers (AACs) possess unique self-assembly behaviours owing to their unique regular architecture.
Collapse
Affiliation(s)
- Yisheng Lv
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Fan Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
11
|
Wang S, Li Z, Pan W. Implicit-solvent coarse-grained modeling for polymer solutions via Mori-Zwanzig formalism. SOFT MATTER 2019; 15:7567-7582. [PMID: 31436282 DOI: 10.1039/c9sm01211g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a bottom-up coarse-graining (CG) method to establish implicit-solvent CG modeling for polymers in solution, which conserves the dynamic properties of the reference microscopic system. In particular, tens to hundreds of bonded polymer atoms (or Lennard-Jones beads) are coarse-grained as one CG particle, and the solvent degrees of freedom are eliminated. The dynamics of the CG system is governed by the generalized Langevin equation (GLE) derived via the Mori-Zwanzig formalism, by which the CG variables can be directly and rigorously linked to the microscopic dynamics generated by molecular dynamics (MD) simulations. The solvent-mediated dynamics of polymers is modeled by the non-Markovian stochastic dynamics in GLE, where the memory kernel can be computed from the MD trajectories. To circumvent the difficulty in direct evaluation of the memory term and generation of colored noise, we exploit the equivalence between the non-Markovian dynamics and Markovian dynamics in an extended space. To this end, the CG system is supplemented with auxiliary variables that are coupled linearly to the momentum and among themselves, subject to uncorrelated Gaussian white noise. A high-order time-integration scheme is used to solve the extended dynamics to further accelerate the CG simulations. To assess, validate, and demonstrate the established implicit-solvent CG modeling, we have applied it to study four different types of polymers in solution. The dynamic properties of polymers characterized by the velocity autocorrelation function, diffusion coefficient, and mean square displacement as functions of time are evaluated in both CG and MD simulations. Results show that the extended dynamics with auxiliary variables can construct arbitrarily high-order CG models to reproduce dynamic properties of the reference microscopic system and to characterize long-time dynamics of polymers in solution.
Collapse
Affiliation(s)
- Shu Wang
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - Wenxiao Pan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Papadakis CM, Müller-Buschbaum P, Laschewsky A. Switch It Inside-Out: "Schizophrenic" Behavior of All Thermoresponsive UCST-LCST Diblock Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9660-9676. [PMID: 31314540 DOI: 10.1021/acs.langmuir.9b01444] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This feature article reviews our recent advancements on the synthesis, phase behavior, and micellar structures of diblock copolymers consisting of oppositely thermoresponsive blocks in aqueous environments. These copolymers combine a nonionic block, which shows lower critical solution temperature (LCST) behavior, with a zwitterionic block that exhibits an upper critical solution temperature (UCST). The transition temperature of the latter class of polymers is strongly controlled by its molar mass and by the salt concentration, in contrast to the rather invariant transition of nonionic polymers with type II LCST behavior such as poly(N-isopropylacrylamide) or poly(N-isopropyl methacrylamide). This allows for implementing the sequence of the UCST and LCST transitions of the polymers at will by adjusting either molecular or, alternatively, physical parameters. Depending on the location of the transition temperatures of both blocks, different switching scenarios are realized from micelles to inverse micelles, namely via the molecularly dissolved state, the aggregated state, or directly. In addition to studies of (semi)dilute aqueous solutions, highly concentrated systems have also been explored, namely water-swollen thin films. Concerning applications, we discuss the possible use of the diblock copolymers as "smart" nanocarriers.
Collapse
Affiliation(s)
- Christine M Papadakis
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| | - Peter Müller-Buschbaum
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz Zentrum (MLZ) , Lichtenbergstraße 1 , 85748 Garching , Germany
| | - André Laschewsky
- Institut für Chemie , Universität Potsdam , Karl-Liebknecht straße 24-25 , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstraße 69 , 14476 Potsdam-Golm , Germany
| |
Collapse
|
13
|
Song X, Qiao C, Tao J, Bao B, Han X, Zhao S. Interfacial Engineering of Thermoresponsive Microgel Capsules: Polymeric Wetting vs Colloidal Adhesion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Vishnevetskaya NS, Hildebrand V, Nizardo NM, Ko CH, Di Z, Radulescu A, Barnsley LC, Müller-Buschbaum P, Laschewsky A, Papadakis CM. All-In-One "Schizophrenic" Self-Assembly of Orthogonally Tuned Thermoresponsive Diblock Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6441-6452. [PMID: 31017439 DOI: 10.1021/acs.langmuir.9b00241] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Smart, fully orthogonal switching was realized in a highly biocompatible diblock copolymer system with variable trigger-induced aqueous self-assembly. The polymers are composed of nonionic and zwitterionic blocks featuring lower and upper critical solution temperatures (LCSTs and UCSTs). In the system investigated, diblock copolymers from poly( N-isopropyl methacrylamide) (PNIPMAM) and a poly(sulfobetaine methacrylamide), systematic variation of the molar mass of the latter block allowed for shifting the UCST of the latter above the LCST of the PNIPMAM block in a salt-free condition. Thus, successive thermal switching results in "schizophrenic" micellization, in which the roles of the hydrophobic core block and the hydrophilic shell block are interchanged depending on the temperature. Furthermore, by virtue of the strong electrolyte-sensitivity of the zwitterionic polysulfobetaine block, we succeeded to shift its UCST below the LCST of the PNIPMAM block by adding small amounts of an electrolyte, thus inverting the pathway of switching. This superimposed orthogonal switching by electrolyte addition enabled us to control the switching scenarios between the two types of micelles (i) via an insoluble state, if the LCST-type cloud point is below the UCST-type cloud point, which is the case at low salt concentrations or (ii) via a molecularly dissolved state, if the LCST-type cloud point is above the UCST-type cloud point, which is the case at high salt concentrations. Systematic variation of the block lengths allowed for verifying the anticipated behavior and identifying the molecular architecture needed. The versatile and tunable self-assembly offers manifold opportunities, for example, for smart emulsifiers or for sophisticated carrier systems.
Collapse
Affiliation(s)
- Natalya S Vishnevetskaya
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| | - Viet Hildebrand
- Institut für Chemie , Universität Potsdam , Karl-Liebknecht- Straße 24-25 , 14476 Potsdam-Golm , Germany
| | - Noverra M Nizardo
- Institut für Chemie , Universität Potsdam , Karl-Liebknecht- Straße 24-25 , 14476 Potsdam-Golm , Germany
| | - Chia-Hsin Ko
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| | - Zhenyu Di
- Forschungszentrum Jülich GmbH , Jülich Centre for Neutron Science at MLZ , Lichtenbergstr. 1 , 85748 Garching , Germany
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH , Jülich Centre for Neutron Science at MLZ , Lichtenbergstr. 1 , 85748 Garching , Germany
| | - Lester C Barnsley
- Forschungszentrum Jülich GmbH , Jülich Centre for Neutron Science at MLZ , Lichtenbergstr. 1 , 85748 Garching , Germany
| | - Peter Müller-Buschbaum
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz Zentrum (MLZ) , Lichtenbergstr. 1 , 85748 Garching , Germany
| | - André Laschewsky
- Institut für Chemie , Universität Potsdam , Karl-Liebknecht- Straße 24-25 , 14476 Potsdam-Golm , Germany
- Fraunhofer-Institut für Angewandte Polymerforschung , Geiselbergstr. 69 , 14476 Potsdam-Golm , Germany
| | - Christine M Papadakis
- Fachgebiet Physik weicher Materie/Lehrstuhl für Funktionelle Materialien, Physik-Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| |
Collapse
|
15
|
Yang Y, Alford A, Kozlovskaya V, Zhao S, Joshi H, Kim E, Qian S, Urban V, Cropek D, Aksimentiev A, Kharlampieva E. Effect of temperature and hydrophilic ratio on the structure of poly(N-vinylcaprolactam)-block-poly(dimethylsiloxane)-block-poly(N-vinylcaprolactam) polymersomes. ACS APPLIED POLYMER MATERIALS 2019; 1:722-736. [PMID: 31828238 PMCID: PMC6905513 DOI: 10.1021/acsapm.8b00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanosized polymeric vesicles (polymersomes) assembled from ABA triblock copolymers of poly(N-vinylcaprolactam)-poly(dimethylsiloxane)-poly(N-vinylcaprolactam) (PVCL-PDMS-PVCL) are a promising platform for biomedical applications, as the temperature-responsiveness of the PVCL blocks enables reversible vesicle shrinkage and permeability of the polymersome shell at elevated temperatures. Herein, we explore the effects of molecular weight, polymer block weight ratios, and temperature on the structure of these polymersomes via electron microscopy, dynamic light scattering, small angle neutron scattering (SANS), and all-atom molecular dynamic methods. We show that the shell structure and overall size of the polymersome can be tuned by varying the hydrophilic (PVCL) weight fraction of the polymer: at room temperature, polymers of smaller hydrophilic ratios form larger vesicles that have thinner shells, whereas polymers with higher PVCL content exhibit interchain aggregation of PVCL blocks within the polymersome shell above 50 °C. Model fitting and model-free analysis of the SANS data reveals that increasing the mass ratio of PVCL to the total copolymer weight from 0.3 to 0.56 reduces the temperature-induced change in vesicle diameter by a factor of 3 while simultaneously increasing the change in shell thickness by a factor of 1.5. Finally, by analysis of the shell structures and overall size of polymersomes with various PVCL weight ratios and those without temperature-dependent polymer components, we bring into focus the mechanism of temperature-triggered drug release reported in a previous study. This work provides new fundamental perspectives on temperature-responsive polymersomes and elucidates important structure-property relationships of their constituent polymers.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shidi Zhao
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Himanshu Joshi
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Eunjung Kim
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Shuo Qian
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Volker Urban
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Donald Cropek
- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, Illinois 61822, United States
| | - Aleksei Aksimentiev
- Department of Physics, Beckman Institute, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
16
|
Song X, Bao B, Tao J, Zhao S, Han X, Liu H. Deswelling Dynamics of Thermoresponsive Microgel Capsules and Their Ultrasensitive Sensing Applications: A Mesoscopic Simulation Study. THE JOURNAL OF PHYSICAL CHEMISTRY C 2019; 123:1828-1838. [DOI: 10.1021/acs.jpcc.8b09998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Abstract
Dynamical equations describing physical systems in contact with a thermal bath are commonly extended by mathematical tools called "thermostats." These tools are designed for sampling ensembles in statistical mechanics. Here we propose a dynamic principle underlying a range of thermostats which is derived using fundamental laws of statistical physics and ensures invariance of the canonical measure. The principle covers both stochastic and deterministic thermostat schemes. Our method has a clear advantage over a range of proposed and widely used thermostat schemes that are based on formal mathematical reasoning. Following the derivation of the proposed principle, we show its generality and illustrate its applications including design of temperature control tools that differ from the Nosé-Hoover-Langevin scheme.
Collapse
Affiliation(s)
- A Samoletov
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - B Vasiev
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Steinschulte AA, Scotti A, Rahimi K, Nevskyi O, Oppermann A, Schneider S, Bochenek S, Schulte MF, Geisel K, Jansen F, Jung A, Mallmann S, Winter R, Richtering W, Wöll D, Schweins R, Warren NJ, Plamper FA. Stimulated Transitions of Directed Nonequilibrium Self-Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703495. [PMID: 29024083 DOI: 10.1002/adma.201703495] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Near-equilibrium stimulus-responsive polymers have been used extensively to introduce morphological variations in dependence of adaptable conditions. Far-less-well studied are triggered transformations at constant conditions. These require the involvement of metastable states, which are either able to approach the equilibrium state after deviation from metastability or can be frozen on returning from nonequilibrium to equilibrium. Such functional nonequilibrium macromolecular systems hold great promise for on-demand transformations, which result in substantial changes in their material properties, as seen for triggered gelations. Herein, a diblock copolymer system consisting of a hydrophilic block and a block that is responsive to both pressure and temperature, is introduced. This species demonstrates various micellar transformations upon leaving equilibrium/nonequilibrium states, which are triggered by a temperature deflection or a temporary application of hydrostatic pressure.
Collapse
Affiliation(s)
| | - Andrea Scotti
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Khosrow Rahimi
- DWI Leibniz Institute for Interactive Materials and Center for Chemical Polymer Technology (CPT), Forckenbeckstr. 50, D-52074, Aachen, Germany
| | - Oleksii Nevskyi
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Alex Oppermann
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Sabine Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Marie F Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Karen Geisel
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Felicitas Jansen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Andre Jung
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Sabrina Mallmann
- DWI Leibniz Institute for Interactive Materials and Center for Chemical Polymer Technology (CPT), Forckenbeckstr. 50, D-52074, Aachen, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry I, TU Dortmund University, Otto-Hahn Str. 6, D-44227, Dortmund, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| | - Ralf Schweins
- Institut Laue-Langevin ILL, DS/LSS, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Felix A Plamper
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056, Aachen, Germany
| |
Collapse
|
19
|
Ng KC, Sheu TWH. Refined energy-conserving dissipative particle dynamics model with temperature-dependent properties and its application in solidification problem. Phys Rev E 2017; 96:043302. [PMID: 29347538 DOI: 10.1103/physreve.96.043302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 06/07/2023]
Abstract
It has been observed previously that the physical behaviors of Schmidt number (Sc) and Prandtl number (Pr) of an energy-conserving dissipative particle dynamics (eDPD) fluid can be reproduced by the temperature-dependent weight function appearing in the dissipative force term. In this paper, we proposed a simple and systematic method to develop the temperature-dependent weight function in order to better reproduce the physical fluid properties. The method was then used to study a variety of phase-change problems involving solidification. The concept of the "mushy" eDPD particle was introduced in order to better capture the temperature profile in the vicinity of the solid-liquid interface, particularly for the case involving high thermal conductivity ratio. Meanwhile, a way to implement the constant temperature boundary condition at the wall was presented. The numerical solutions of one- and two-dimensional solidification problems were then compared with the analytical solutions and/or experimental results and the agreements were promising.
Collapse
Affiliation(s)
- K C Ng
- National Center for Theoretical Sciences (NCTS), National Taiwan University, Taipei, Taiwan and Department of Mechanical Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor, Malaysia
| | - T W H Sheu
- Center for Advanced Study on Theoretical Sciences (CASTS), National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Blumers AL, Tang YH, Li Z, Li X, Karniadakis GE. GPU-accelerated Red Blood Cells Simulations with Transport Dissipative Particle Dynamics. COMPUTER PHYSICS COMMUNICATIONS 2017; 217:171-179. [PMID: 29104303 PMCID: PMC5667691 DOI: 10.1016/j.cpc.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders.
Collapse
Affiliation(s)
- Ansel L Blumers
- Department of Physics, Brown University, Providence, RI, USA
| | - Yu-Hang Tang
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Zhen Li
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | | |
Collapse
|
21
|
Li Z, Lee HS, Darve E, Karniadakis GE. Computing the non-Markovian coarse-grained interactions derived from the Mori–Zwanzig formalism in molecular systems: Application to polymer melts. J Chem Phys 2017; 146:014104. [DOI: 10.1063/1.4973347] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhen Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - Hee Sun Lee
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Eric Darve
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|