1
|
The continuous fiber networks with a balanced bimodal orientation of P(NDI2OD-T2) by controlling solution nucleation and face-on and edge-on crystallization rates. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
3
|
Morozov IA. Atomic force microscopy nanoindentation kinetics and subsurface visualization of soft inhomogeneous polymer. Microsc Res Tech 2021; 84:1959-1966. [PMID: 33713508 DOI: 10.1002/jemt.23751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 11/11/2022]
Abstract
Modern techniques of nanoindentation by atomic force microscopy (AFM) produce maps of topography and physical-mechanical properties of the material. Analysis of the interaction rate of the AFM tip with the soft surface reveals the surface and subsurface structure and expands standard analysis of the material behavior. Phase-separated polymer (polyurethane, elastic modulus-6 MPa) is studied. Reversible inelastic changes of the surface at different stages of indentation were established in dependence on peculiarities of velocity and position of the AFM-tip in the material: uniform soft nanofilm covering the outer surface gradually passes into fibrillar heterogeneous structure of the polymer. The point of stable mechanical contact is defined, and the elastic moduli of soft and hard blocks of the polymer are estimated using certain intervals of the indentation. The presented methods of surface analysis are useful in the study of a wide class of soft heterogeneous materials.
Collapse
Affiliation(s)
- Ilya A Morozov
- Institute of Continuous Media Mechanics UB RAS, Perm, Russia
| |
Collapse
|
4
|
Palacios JK, Zhang H, Zhang B, Hadjichristidis N, Müller AJ. Direct identification of three crystalline phases in PEO-b-PCL-b-PLLA triblock terpolymer by In situ hot-stage atomic force microscopy. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Fanta GM, Jarka P, Szeluga U, Tański T, Kim JY. Phase Diagrams of n-Type Low Bandgap Naphthalenediimide-Bithiophene Copolymer Solutions and Blends. Polymers (Basel) 2019; 11:polym11091474. [PMID: 31505889 PMCID: PMC6780169 DOI: 10.3390/polym11091474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 11/28/2022] Open
Abstract
Phase diagrams of n-type low bandgap poly{(N,N′-bis(2-octyldodecyl)naphthalene -1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5′,-(2,2′-bithiophene)} (P(NDI2OD-T2)) solutions and blends were constructed. To this end, we employed the Flory–Huggins (FH) lattice theory for qualitatively understanding the phase behavior of P(NDI2OD-T2) solutions as a function of solvent, chlorobenzene, chloroform, and p-xylene. Herein, the polymer–solvent interaction parameter (χ) was obtained from a water contact angle measurement, leading to the solubility parameter. The phase behavior of these P(NDI2OD-T2) solutions showed both liquid–liquid (L–L) and liquid–solid (L–S) phase transitions. However, depending on the solvent, the relative position of the liquid–liquid phase equilibria (LLE) and solid–liquid phase equilibria (SLE) (i.e., two-phase co-existence curves) could be changed drastically, i.e., LLE > SLE, LLE ≈ SLE, and SLE > LLE. Finally, we studied the phase behavior of the polymer–polymer mixture composed of P(NDI2OD-T2) and regioregular poly(3-hexylthiophene-2,5-dyil) (r-reg P3HT), in which the melting transition curve was compared with the theory of melting point depression combined with the FH model. The FH theory describes excellently the melting temperature of the r-reg P3HT/P(NDI2OD-T2) mixture when the entropic contribution to the polymer–polymer interaction parameter (χ = 116.8 K/T − 0.185, dimensionless) was properly accounted for, indicating an increase of entropy by forming a new contact between two different polymer segments. Understanding the phase behavior of the polymer solutions and blends affecting morphologies plays an integral role towards developing polymer optoelectronic devices.
Collapse
Affiliation(s)
- Gada Muleta Fanta
- Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
- School of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Pawel Jarka
- Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Urszula Szeluga
- Center of Polymer and Carbon Materials to the Polish Academy of Sciences, M. Curie-Skłodowska 34 Street, 41-819 Zabrze, Poland
| | - Tomasz Tański
- Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Jung Yong Kim
- School of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378 Jimma, Ethiopia.
- School of Chemical Engineering, Jimma Institute of Technology, Jimma University, P.O. Box 378 Jimma, Ethiopia.
| |
Collapse
|
6
|
Trefz D, Gross YM, Dingler C, Tkachov R, Hamidi-Sakr A, Kiriy A, McNeill CR, Brinkmann M, Ludwigs S. Tuning Orientational Order of Highly Aggregating P(NDI2OD-T2) by Solvent Vapor Annealing and Blade Coating. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02176] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel Trefz
- IPOC-Functional Polymers, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yannic M. Gross
- IPOC-Functional Polymers, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Carsten Dingler
- IPOC-Functional Polymers, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Roman Tkachov
- IPOC-Functional Polymers, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Amer Hamidi-Sakr
- Institut Charles Sadron, CNRS − Université de Strasbourg, 23 rue du loess, 67034 Strasbourg, France
| | - Anton Kiriy
- Leibniz Institute
of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Martin Brinkmann
- Institut Charles Sadron, CNRS − Université de Strasbourg, 23 rue du loess, 67034 Strasbourg, France
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry (IPOC), University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Ulrich SV, Sutch T, Szulczewski G, Schweizer M, Barbosa Neto NM, Araujo PT. Broadband polarized emission from P(NDI2OD-T2) polymer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:265101. [PMID: 29775180 DOI: 10.1088/1361-648x/aac634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the P(NDI2OD-T2) photophysical properties via absorbance and fluorescence spectroscopy, in association with the experimental approach baptized Stokes Spectroscopy, which provides valuable material information through the acquisition and analysis of the fluorescence polarization degree. By changing solvents and using different samples such as solutions, thick, and thin films, it is possible to control the polarization degree spectrum associated to the fluorescence emitted by the polymer's isolated chains and aggregates. We show that the polarization degree could become a powerful tool to obtain information related to the samples morphology, which is connected to their microscopic structure. Moreover, the polarization degree spectra suggest that depolarization effects linked to energy and charge transfer mechanisms are likely taking place. Our findings indicate that P(NDI2OD-T2) polymers are excellent candidates for the advancement of organic technologies that rely on the emission and detection of polarized lights.
Collapse
Affiliation(s)
- Steven V Ulrich
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, United States of America. Center for Information Technology (MINT), University of Alabama, Tuscaloosa, AL, United States of America
| | | | | | | | | | | |
Collapse
|
8
|
Nübling F, Yang D, Müller-Buschbaum P, Brinkmann M, Sommer M. In Situ Synthesis of Ternary Block Copolymer/Homopolymer Blends for Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18149-18160. [PMID: 29742897 DOI: 10.1021/acsami.8b04753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A detailed investigation of in situ-synthesized all-conjugated block copolymer (BCP) compatibilized ternary blends containing poly(3-hexylthiophene) (P3HT) and poly{[ N, N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dibcarboximide)-2,6-diyl]- alt-5,5'-(2,2'-bithiophene)} (PNDIT2) as donor and acceptor polymers, respectively, is presented. Both polymers are incompatible and show strong segregation in blends, which renders compatibilization with their corresponding BCPs promising to enable nanometer-phase-separated structures suitable for excitonic devices. Here, we synthesize a ternary block copolymer/homopolymer blend system and investigate the phase behavior as a function of block copolymer molecular weight and different annealing conditions. The device performance decreases on increasing annealing temperatures. To understand this effect, morphological investigations including atomic force microscopy, high-resolution transmission electron microscopy (HR-TEM), and grazing incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) are carried out. On comparing domain sizes of pristine and compatibilized blends obtained from GISAXS, a weak compatibilization effect appears to take place for the in situ-synthesized ternary systems. The effect of thermal annealing is most prevalent for all samples, which, for the highest annealing temperature above the melting point of PNDIT2 (310 °C), ultimately leads to a change from the face-on to edge-on orientation of PNDIT2, as seen in GIWAXS. This effect dominates and decreases all photovoltaic parameters, irrespective of whether a pristine or compatibilized blend is used.
Collapse
Affiliation(s)
- Fritz Nübling
- Institut für Makromolekulare Chemie , Albert-Ludwigs-Universität Freiburg , Stefan-Meier-Straße 31 , 79104 Freiburg , Germany
- Freiburger Materialforschungszentrum , Albert-Ludwigs-Universität Freiburg , Stefan-Meier-Straße 21 , 79104 Freiburg , Germany
| | - Dan Yang
- Lehrstuhl für Funktionelle Materialien, Physik Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik Department , Technische Universität München , James-Franck-Straße 1 , 85748 Garching , Germany
| | - Martin Brinkmann
- Institut Charles Sadron , CNRS-Univeristé de Strasbourg , 23 rue de Loess , 67034 Strasbourg , France
| | - Michael Sommer
- Institut für Chemie , Technische Universität Chemnitz , Straße der Nationen 62 , 09111 Chemnitz , Germany
| |
Collapse
|
9
|
Dehnert M, Magerle R. 3D depth profiling of the interaction between an AFM tip and fluid polymer solutions. NANOSCALE 2018. [PMID: 29532845 DOI: 10.1039/c8nr00299a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the atomic force microscopy (AFM) investigation of soft polymers and liquids, the tip-sample interaction is dominated by long-range van der Waals forces, capillary forces and adhesion. Furthermore, the tip can indent several tens of nanometres into the surface, and it can pull off a polymer filament from the surface. Therefore, measuring the unperturbed shape of a polymeric fluid can be challenging. Here, we study the tip-sample interaction with polystyrene droplets swollen in chloroform vapour, where we can utilize the solvent vapour concentration to adjust the specimen's mechanical properties from a stiff solid to a fluid film. With the same AFM tip, we use two different AFM force spectroscopy methods to measure three-dimensional (3D) depth profiles of the tip-sample interaction: force-distance (FD) curves and amplitude-phase-distance (APD) curves. The 3D depth profiles reconstructed from FD and APD measurements provide detailed insight into the tip-sample interaction mechanism for a fluid polymer solution. The fluid's intrinsic relaxation time, which we measure with an AFM-based step-strain experiment, is essential for understanding the tip-sample interaction mechanism. Furthermore, measuring 3D depth profiles and using APD data to reconstruct the unperturbed surface comprise a versatile methodology for obtaining accurate dimensional measurements of fluid and gel-like objects on the nanometre scale.
Collapse
Affiliation(s)
- Martin Dehnert
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| | - Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| |
Collapse
|
10
|
Uhlig MR, Magerle R. Unraveling capillary interaction and viscoelastic response in atomic force microscopy of hydrated collagen fibrils. NANOSCALE 2017; 9:1244-1256. [PMID: 28054696 DOI: 10.1039/c6nr07697a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mechanical properties of collagen fibrils depend on the amount and the distribution of water molecules within the fibrils. Here, we use atomic force microscopy (AFM) to study the effect of hydration on the viscoelastic properties of reconstituted type I collagen fibrils in air with controlled relative humidity. With the same AFM tip, we investigate the same area of a collagen fibril with two different force spectroscopy methods: force-distance (FD) and amplitude-phase-distance (APD) measurements. This allows us to separate the contributions of the fibril's viscoelastic response and the capillary force to the tip-sample interaction. A water bridge forms between the tip apex and the surface, causing an attractive capillary force, which is the main contribution to the energy dissipated from the tip to the specimen in dynamic AFM. The force hysteresis in the FD measurements and the tip indentation of only 2 nm in the APD measurements show that the hydrated collagen fibril is a viscoelastic solid. The mechanical properties of the gap regions and the overlap regions in the fibril's D-band pattern differ only in the top 2 nm but not in the fibril's bulk. We attribute this to the reduced number of intermolecular crosslinks in the reconstituted collagen fibril. The presented methodology allows the mechanical surface properties of hydrated collagenous tissues and biomaterials to be studied with unprecedented detail on the nanometer scale.
Collapse
Affiliation(s)
- Manuel R Uhlig
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| | - Robert Magerle
- Fakultät für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany.
| |
Collapse
|
11
|
Dehnert M, Spitzner EC, Beckert F, Friedrich C, Magerle R. Subsurface Imaging of Functionalized and Polymer-Grafted Graphene Oxide. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Martin Dehnert
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Eike-Christian Spitzner
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Fabian Beckert
- Freiburger
Materialforschungszentrum, Albert-Ludwigs-Universität, D-79098 Freiburg, Germany
| | - Christian Friedrich
- Freiburger
Materialforschungszentrum, Albert-Ludwigs-Universität, D-79098 Freiburg, Germany
| | - Robert Magerle
- Fakultät
für Naturwissenschaften, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| |
Collapse
|