1
|
Ghosh S, Vemparala S. Kinetics of charged polymer collapse in poor solvents. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:045101. [PMID: 34352747 DOI: 10.1088/1361-648x/ac1aef] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Extensive molecular dynamics simulations, using simple charged polymer models, have been employed to probe the collapse kinetics of a single flexible polyelectrolyte (PE) chain under implicit poor solvent conditions. We investigate the role of the charged nature of PE chain (A), valency of counterions (Z) on the kinetics of such PE collapse. Our study shows that the collapse kinetics of charged polymers are significantly different from those of the neutral polymer and that the finite-size scaling behavior of PE collapse times does not follow the Rouse scaling as observed in the case of neutral polymers. The critical exponent for charged PE chains is found to be less than that of neutral polymers and also exhibits dependence on counterion valency. The coarsening of clusters along the PE chain suggests a multi-stage collapse and exhibits opposite behavior of exponents compared to neutral polymers: faster in the early stages and slower in the later stages of collapse.
Collapse
Affiliation(s)
- Susmita Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
2
|
Schneider J, Meinel MK, Dittmar H, Müller-Plathe F. Different Stages of Polymer-Chain Collapse Following Solvent Quenching–Scaling Relations from Dissipative Particle Dynamics Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jurek Schneider
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Melissa K. Meinel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Han Dittmar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, D-64287 Darmstadt, Germany
| |
Collapse
|
3
|
Paciolla M, Arismendi-Arrieta DJ, Moreno AJ. Coarsening Kinetics of Complex Macromolecular Architectures in Bad Solvent. Polymers (Basel) 2020; 12:E531. [PMID: 32121665 PMCID: PMC7182883 DOI: 10.3390/polym12030531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022] Open
Abstract
This study reports a general scenario for the out-of-equilibrium features of collapsing polymeric architectures. We use molecular dynamics simulations to characterize the coarsening kinetics, in bad solvent, for several macromolecular systems with an increasing degree of structural complexity. In particular, we focus on: flexible and semiflexible polymer chains, star polymers with 3 and 12 arms, and microgels with both ordered and disordered networks. Starting from a powerful analogy with critical phenomena, we construct a density field representation that removes fast fluctuations and provides a consistent characterization of the domain growth. Our results indicate that the coarsening kinetics presents a scaling behaviour that is independent of the solvent quality parameter, in analogy to the time-temperature superposition principle. Interestingly, the domain growth in time follows a power-law behaviour that is approximately independent of the architecture for all the flexible systems; while it is steeper for the semiflexible chains. Nevertheless, the fractal nature of the dense regions emerging during the collapse exhibits the same scaling behaviour for all the macromolecules. This suggests that the faster growing length scale in the semiflexible chains originates just from a faster mass diffusion along the chain contour, induced by the local stiffness. The decay of the dynamic correlations displays scaling behavior with the growing length scale of the system, which is a characteristic signature in coarsening phenomena.
Collapse
Affiliation(s)
- Mariarita Paciolla
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain;
| | | | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain;
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain;
| |
Collapse
|
4
|
Gumerov RA, Gau E, Xu W, Melle A, Filippov SA, Sorokina AS, Wolter NA, Pich A, Potemkin II. Amphiphilic PVCL/TBCHA microgels: From synthesis to characterization in a highly selective solvent. J Colloid Interface Sci 2020; 564:344-356. [DOI: 10.1016/j.jcis.2019.12.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
|
5
|
Rovigatti L, Gnan N, Ninarello A, Zaccarelli E. Connecting Elasticity and Effective Interactions of Neutral Microgels: The Validity of the Hertzian Model. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00099] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Nicoletta Gnan
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Andrea Ninarello
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Emanuela Zaccarelli
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
6
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
7
|
Rovigatti L, Gnan N, Tavagnacco L, Moreno AJ, Zaccarelli E. Numerical modelling of non-ionic microgels: an overview. SOFT MATTER 2019; 15:1108-1119. [PMID: 30543246 PMCID: PMC6371763 DOI: 10.1039/c8sm02089b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 05/03/2023]
Abstract
Microgels are complex macromolecules. These colloid-sized polymer networks possess internal degrees of freedom and, depending on the polymer(s) they are made of, can acquire a responsiveness to variations of the environment (temperature, pH, salt concentration, etc.). Besides being valuable for many practical applications, microgels are also extremely important to tackle fundamental physics problems. As a result, these last years have seen a rapid development of protocols for the synthesis of microgels, and more and more research has been devoted to the investigation of their bulk properties. However, from a numerical standpoint the picture is more fragmented, as the inherently multi-scale nature of microgels, whose bulk behaviour crucially depends on the microscopic details, cannot be handled at a single level of coarse-graining. Here we present an overview of the methods and models that have been proposed to describe non-ionic microgels at different length-scales, from the atomistic to the single-particle level. We especially focus on monomer-resolved models, as these have the right level of details to capture the most important properties of microgels, responsiveness and softness. We suggest that these microscopic descriptions, if realistic enough, can be employed as starting points to develop the more coarse-grained representations required to investigate the behaviour of bulk suspensions.
Collapse
Affiliation(s)
- Lorenzo Rovigatti
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Nicoletta Gnan
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Letizia Tavagnacco
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| | - Angel J. Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC
,
Paseo Manuel de Lardizabal 5
, 20018 San Sebastián
, Spain
- Donostia International Physics Center
,
Paseo Manuel de Lardizabal 4
, 20018 San Sebastian
, Spain
| | - Emanuela Zaccarelli
- Dipartimento di Fisica
, Sapienza Università di Roma
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
- CNR-ISC
, Uos Sapienza
,
Piazzale A. Moro 2
, 00185 Roma
, Italy
.
| |
Collapse
|
8
|
Moreno AJ, Lo Verso F. Computational investigation of microgels: synthesis and effect of the microstructure on the deswelling behavior. SOFT MATTER 2018; 14:7083-7096. [PMID: 30118116 DOI: 10.1039/c8sm01407h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present computer simulations of a realistic model of microgels. Unlike the regular network frameworks usually assumed in the simulation literature, we model and simulate a realistic and efficient synthesis route, mimicking cross-linking of functionalized chains inside a cavity. This model is inspired, e.g., by microfluidic fabrication of microgels from macromolecular precursors and is different from standard polymerization routes. The assembly of the chains is mediated by a low fraction of interchain crosslinks. The microgels are polydisperse in size and shape but globally spherical objects. In order to deeply understand the microgel structure and eventually improve the synthesis protocol we characterize their conformational properties and deswelling kinetics, and compare them with the results found for microgels obtained via underlying regular (diamond-like) structures. For the same molecular weight, monomer concentration and effective degree of cross-linking, the specific microstructure of the microgel has no significant effect on the locus of the volume phase transition (VPT). However, it strongly affects the deswelling kinetics, as revealed by a consistent analysis of the domain growth during the microgel collapse. Though both the disordered and the regular networks exhibit a similar early growth of the domains, an acceleration is observed in the regular network at the late stage of the collapse. Similar trends are found for the dynamic correlations coupled to the domain growth. As a consequence, the fast late processes for the domain growth and the dynamic correlations in the regular network are compensated, and the dynamic correlations follow a power-law dependence on the growing length scale that is independent of the microgel microstructure.
Collapse
Affiliation(s)
- Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.
| | | |
Collapse
|
9
|
Keidel R, Ghavami A, Lugo DM, Lotze G, Virtanen O, Beumers P, Pedersen JS, Bardow A, Winkler RG, Richtering W. Time-resolved structural evolution during the collapse of responsive hydrogels: The microgel-to-particle transition. SCIENCE ADVANCES 2018; 4:eaao7086. [PMID: 29740608 PMCID: PMC5938240 DOI: 10.1126/sciadv.aao7086] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/20/2018] [Indexed: 05/19/2023]
Abstract
Adaptive hydrogels, often termed smart materials, are macromolecules whose structure adjusts to external stimuli. Responsive micro- and nanogels are particularly interesting because the small length scale enables very fast response times. Chemical cross-links provide topological constraints and define the three-dimensional structure of the microgels, whereas their porous structure permits fast mass transfer, enabling very rapid structural adaption of the microgel to the environment. The change of microgel structure involves a unique transition from a flexible, swollen finite-size macromolecular network, characterized by a fuzzy surface, to a colloidal particle with homogeneous density and a sharp surface. In this contribution, we determine, for the first time, the structural evolution during the microgel-to-particle transition. Time-resolved small-angle x-ray scattering experiments and computer simulations unambiguously reveal a two-stage process: In a first, very fast process, collapsed clusters form at the periphery, leading to an intermediate, hollowish core-shell structure that slowly transforms to a globule. This structural evolution is independent of the type of stimulus and thus applies to instantaneous transitions as in a temperature jump or to slower stimuli that rely on the uptake of active molecules from and/or exchange with the environment. The fast transitions of size and shape provide unique opportunities for various applications as, for example, in uptake and release, catalysis, or sensing.
Collapse
Affiliation(s)
- Rico Keidel
- Chair of Technical Thermodynamics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Schinkelstrasse 8, 52062 Aachen, Germany
| | - Ali Ghavami
- Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dersy M. Lugo
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Gudrun Lotze
- European Synchrotron Radiation Facility (ESRF), ID02–Time-Resolved Ultra Small-Angle X-Ray Scattering, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Otto Virtanen
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Peter Beumers
- Chair of Technical Thermodynamics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Schinkelstrasse 8, 52062 Aachen, Germany
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Andre Bardow
- Chair of Technical Thermodynamics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Schinkelstrasse 8, 52062 Aachen, Germany
- Institute of Energy and Climate Research: Energy Systems Engineering (IEK-10), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
- Corresponding author. (W.R.); (R.G.W.)
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
- DWI–Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, D-52056 Aachen, Germany
- Corresponding author. (W.R.); (R.G.W.)
| |
Collapse
|
10
|
Brugnoni M, Scotti A, Rudov AA, Gelissen APH, Caumanns T, Radulescu A, Eckert T, Pich A, Potemkin II, Richtering W. Swelling of a Responsive Network within Different Constraints in Multi-Thermosensitive Microgels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02722] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Andrey A. Rudov
- DWI - Leibniz Institute
for Interactive Materials e.V., 52056 Aachen, Germany
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | | | - Tobias Caumanns
- GFE Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen, Germany
| | - Aurel Radulescu
- Jülich
Centre
for Neutron Science, Outstation at MLZ, 85748 Garching, Germany
| | | | - Andrij Pich
- DWI - Leibniz Institute
for Interactive Materials e.V., 52056 Aachen, Germany
| | - Igor I. Potemkin
- DWI - Leibniz Institute
for Interactive Materials e.V., 52056 Aachen, Germany
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
- National Research
South
Ural State University, 454080 Chelyabinsk, Russian Federation
| | | |
Collapse
|
11
|
Sean D, Landsgesell J, Holm C. Computer Simulations of Static and Dynamical Properties of Weak Polyelectrolyte Nanogels in Salty Solutions. Gels 2017; 4:E2. [PMID: 30674778 PMCID: PMC6318681 DOI: 10.3390/gels4010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 12/02/2022] Open
Abstract
We investigate the chemical equilibria of weak polyelectrolyte nanogels with reaction ensemble Monte Carlo simulations. With this method, the chemical identity of the nanogel monomers can change between neutral or charged following the acid-base equilibrium reaction HA ⇌ A- + H⁺. We investigate the effect of changing the chemical equilibria by modifying the dissociation constant K a . These simulations allow for the extraction of static properties like swelling equilibria and the way in which charge-both monomer and ionic-is distributed inside the nanogel. Our findings reveal that, depending on the value of K a , added salt can either increase or decrease the gel size. Using the calculated mean-charge configurations of the nanogel from the reaction ensemble simulation as a quenched input to coupled lattice-Boltzmann molecular dynamics simulations, we investigate dynamical nanogel properties such as the electrophoretic mobility μ and the diffusion coefficient D.
Collapse
Affiliation(s)
- David Sean
- Institute for computational physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Jonas Landsgesell
- Institute for computational physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for computational physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany.
| |
Collapse
|
12
|
Gnan N, Rovigatti L, Bergman M, Zaccarelli E. In Silico Synthesis of Microgel Particles. Macromolecules 2017; 50:8777-8786. [PMID: 29151620 PMCID: PMC5688413 DOI: 10.1021/acs.macromol.7b01600] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Indexed: 01/26/2023]
Abstract
Microgels are colloidal-scale particles individually made of cross-linked polymer networks that can swell and deswell in response to external stimuli, such as changes to temperature or pH. Despite a large amount of experimental activities on microgels, a proper theoretical description based on individual particle properties is still missing due to the complexity of the particles. To go one step further, here we propose a novel methodology to assemble realistic microgel particles in silico. We exploit the self-assembly of a binary mixture composed of tetravalent (cross-linkers) and bivalent (monomer beads) patchy particles under spherical confinement in order to produce fully bonded networks. The resulting structure is then used to generate the initial microgel configuration, which is subsequently simulated with a bead-spring model complemented by a temperature-induced hydrophobic attraction. To validate our assembly protocol, we focus on a small microgel test case and show that we can reproduce the experimental swelling curve by appropriately tuning the confining sphere radius, something that would not be possible with less sophisticated assembly methodologies, e.g., in the case of networks generated from an underlying crystal structure. We further investigate the structure (in reciprocal and real space) and the swelling curves of microgels as a function of temperature, finding that our results are well described by the widely used fuzzy sphere model. This is a first step toward a realistic modeling of microgel particles, which will pave the way for a careful assessment of their elastic properties and effective interactions.
Collapse
Affiliation(s)
- Nicoletta Gnan
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale A. Moro
2, 00185 Roma, Italy
| | - Lorenzo Rovigatti
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale A. Moro
2, 00185 Roma, Italy
| | - Maxime Bergman
- Physical
Chemistry, Department of Chemistry, Lund
University, Lund, Sweden
| | - Emanuela Zaccarelli
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
- Dipartimento
di Fisica, Sapienza Università di
Roma, Piazzale A. Moro
2, 00185 Roma, Italy
| |
Collapse
|
13
|
Affiliation(s)
- Natasha Kamerlin
- Department
of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Box
523, S-751 20 Uppsala, Sweden
- Department
of Mathematics, Uppsala University, Box 480, S-751 06 Uppsala, Sweden
| | - Christer Elvingson
- Department
of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Box
523, S-751 20 Uppsala, Sweden
| |
Collapse
|
14
|
Wang Z, Gao J, Ustach V, Li C, Sun S, Hu S, Faller R. Tunable Permeability of Cross-Linked Microcapsules from pH-Responsive Amphiphilic Diblock Copolymers: A Dissipative Particle Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7288-7297. [PMID: 28661159 DOI: 10.1021/acs.langmuir.7b01586] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using dissipative particle dynamics simulation, we probe the tunable permeability of cross-linked microcapsules made from pH-sensitive diblock copolymers poly(ethylene oxide)-b-poly(N,N-diethylamino-2-ethyl methacrylate) (PEO-b-PDEAEMA). We first examine the self-assembly of non-cross-linked microcapsules and their pH-responsive collapse and then explore the effects of cross-linking and block interaction on the swelling or deswelling of cross-linked microcapsules. Our results reveal a preferential loading of hydrophobic dicyclopentadiene (DCPD) molecules in PEO-b-PDEAEMA copolymers. Upon reduction of pH, non-cross-linked microcapsules fully decompose into small wormlike clusters as a result of large self-repulsions of protonated copolymers. With increasing degree of cross-linking, the morphology of the microcapsule becomes more stable to pH change. The highly cross-linked microcapsule shell undergoes significant local polymer rearrangement in acidic solution, which eliminates the amphiphilicility and therefore enlarges the permeability of the shell. The responsive cross-linked shell experiences a disperse-to-buckle configurational transition upon reduction of pH, which is effective for the steady or pulsatile regulation of shell permeability. The swelling rate of the cross-linked shell is dependent on both electrostatic and nonelectrostatic interactions between the pH-sensitive groups as well as the other groups. Our study highlights the combination of cross-linking structure and block interactions in stabilizing microcapsules and tuning their selective permeability.
Collapse
Affiliation(s)
- Zhikun Wang
- Department of Chemical Engineering, University of California , Davis, California 95616, United States
| | | | - Vincent Ustach
- Department of Chemical Engineering, University of California , Davis, California 95616, United States
| | | | | | | | - Roland Faller
- Department of Chemical Engineering, University of California , Davis, California 95616, United States
| |
Collapse
|
15
|
Abstract
The morphology of core-shell microgels under different swelling conditions and as a function of the core-shell thickness ratio is systematically characterized by mesoscale hydrodynamic simulations. With increasing hydrophobic interaction of the shell polymers, we observe drastic morphological changes from a core-shell structure to an inverted microgel, where the core is turned to the outside, or a microgel with a patchy surface of core polymers directly exposed to the environment. We establish a phase diagram of the various morphologies. Moreover, we characterize the polymer and microgel conformations. For sufficiently thick shells, the changes of the shell size upon increasing hydrophobic interactions are well described by the Flory-Rehner theory. Additionally, this theory provides a critical line in the phase diagram separating core-shell structures from the distinct two other phases. The appearing new phases provide a novel route to nano- and microscale functionalized materials.
Collapse
Affiliation(s)
- Ali Ghavami
- Theoretical Soft Matter and
Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Roland G. Winkler
- Theoretical Soft Matter and
Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
16
|
Majumder S, Zierenberg J, Janke W. Kinetics of polymer collapse: effect of temperature on cluster growth and aging. SOFT MATTER 2017; 13:1276-1290. [PMID: 28106216 DOI: 10.1039/c6sm02197b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using state of the art Monte Carlo simulations of a bead-spring model we investigate both the equilibrium and the nonequilibrium behavior of the homopolymer collapse. The equilibrium properties obtained via multicanonical sampling recover the well-known finite-size scaling behavior of collapse for our model polymer. For the nonequilibrium dynamics we study the collapse by quenching the homopolymer from an expanded coiled state into the globular phase. The sequence of events observed during the collapse is independent of the quench depth. In particular, we focus on finding out universal scaling behaviors related to the growth or coarsening of clusters of monomers, by drawing phenomenological analogies with ordering kinetics. We distinguish the cluster coarsening stage from the initial stage of primary cluster formation. By successful application of a nonequilibrium finite-size scaling analysis we show that at all quench temperatures, during the coarsening stage, the cluster growth is roughly linear and can be characterised by a universal finite-size scaling function. In addition, we provide evidence of aging by constructing a suitable autocorrelation function and its corresponding dynamical power-law scaling with respect to the growing cluster sizes. The predicted theoretical bound for the exponent governing such scaling is strictly obeyed by the numerical data irrespective of the quench temperature. The results and methods presented here in general should find application in similar phenomena such as the collapse of a protein molecule preceding its folding.
Collapse
Affiliation(s)
- Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany.
| | - Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany.
| |
Collapse
|