1
|
Lozano-Pérez A, Kulyabin P, Kumar A. Rising Opportunities in Catalytic Dehydrogenative Polymerization. ACS Catal 2025; 15:3619-3635. [PMID: 40078407 PMCID: PMC11894598 DOI: 10.1021/acscatal.4c08091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
This article gives a perspective on various types of catalytic dehydrogenative polymerization reactions (including organic and main group polymers) while introducing "hydrogen-borrowing polymerization" and "acceptorless dehydrogenative polymerization" to this class. Limitations and future opportunities of each method have been discussed.
Collapse
Affiliation(s)
| | | | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K.
| |
Collapse
|
2
|
Laroque S, Locock KES, Perrier S. Cationic Star Polymers Obtained by the Arm-First Approach─Influence of Arm Number and Positioning of Cationic Units on Antimicrobial Activity. Biomacromolecules 2025; 26:190-200. [PMID: 39620381 PMCID: PMC11733951 DOI: 10.1021/acs.biomac.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 01/14/2025]
Abstract
Recently, we published a study demonstrating the promising structure-activity relationship of 4-arm star polymers toward bacterial cells and biofilms. The aim of this study was to increase the number of arms to determine if this could further enhance activity via the arm-first approach, which enables access to star structures with a higher number of arms. A library of amphiphilic diblock and miktoarm star polymers was successfully synthesized, and their biological properties were assessed. The increased number of arms failed to increase activity for the diblock stars, possibly due to shielding of the cationic units located at the core from binding to the membrane, which was slightly improved for the miktoarm structures. However, the efficient synthesis of these structures shown herein could be used to synthesize star polymers with a higher cationic ratio or longer arms, thereby circumventing the limitation of reduced interaction of cationic units with the membrane.
Collapse
Affiliation(s)
- Sophie Laroque
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | | | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Division
of Biomedical Science, Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, 381
Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Zheng Y, Sarkar J, Niino H, Chatani S, Hsu SY, Goto A. Synthesis of core-crosslinked star polymers via organocatalyzed living radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00663k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Core-crosslinked star polymers synthesized via a grafting-through approach using RCMP.
Collapse
Affiliation(s)
- Yichao Zheng
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Hiroshi Niino
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Shunsuke Chatani
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Shu Yao Hsu
- Otake R&D Center
- Mitsubishi Chemical Corporation
- Hiroshima 739-0693
- Japan
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| |
Collapse
|
4
|
Beyer VP, Cattoz B, Becer CR. Thiol-Bromo Click Reaction for One-Pot Synthesis of Star-Shaped Polymers. Macromol Rapid Commun 2020; 42:e2000519. [PMID: 33210395 DOI: 10.1002/marc.202000519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Star-shaped polymers have unique physical properties and they are sought after materials in industry. However, the ease of synthesis is essential for translation of these materials into large-scale applications. Herein, a highly efficient synthetic method to prepare star-shaped polymers by combination of Cu-mediated reversible deactivation radical polymerization (Cu-RDRP) and thiol-bromo click reaction is described. Well-defined linear and block polymers with a very high bromine chain end fidelity are obtained via Cu-RDRP and subsequently react with multi-functional thiol compounds. High coupling efficiencies of larger than 90% are obtained owing to the quick and efficient reaction between thiols and alkyl bromides. Moreover, the arms of the obtained star-shaped polymers are linked via thioether bonds to the core, making them susceptible for oxidative degradation.
Collapse
Affiliation(s)
- Valentin Peter Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Beatrice Cattoz
- Milton Hill Business & Technology Centre, Infineum UK Ltd., Abingdon, Oxfordshire, OX13 6BB, UK
| | - Caglar Remzi Becer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Gurnani P, Blakney AK, Terracciano R, Petch JE, Blok AJ, Bouton CR, McKay PF, Shattock RJ, Alexander C. The In Vitro, Ex Vivo, and In Vivo Effect of Polymer Hydrophobicity on Charge-Reversible Vectors for Self-Amplifying RNA. Biomacromolecules 2020; 21:3242-3253. [PMID: 32644777 DOI: 10.1021/acs.biomac.0c00698] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA technology has the potential to revolutionize vaccination. However, the lack of clear structure-property relationships in relevant biological models mean there is no clear consensus on the chemical motifs necessary to improve RNA delivery. In this work, we describe the synthesis of a series of copolymers based on the self-hydrolyzing charge-reversible polycation poly(dimethylaminoethyl acrylate) (pDMAEA), varying the lipophilicity of the additional co-monomers. All copolymers formed stable polyplexes, showing efficient complexation with model nucleic acids from nitrogen/phosphate (N/P) ratios of N/P = 5, with more hydrophobic complexes exhibiting slower charge reversal and disassembly compared to hydrophilic analogues. The more hydrophobic copolymers outperformed hydrophilic versions, homopolymer controls and the reference standard polymer (polyethylenimine), in transfection assays on 2D cell monolayers, albeit with significantly higher toxicities. Similarly, hydrophobic derivatives displayed up to a 4-fold higher efficacy in terms of the numbers of cells expressing green fluorescent protein (GFP+) cells in ex vivo human skin (10%) compared to free RNA (2%), attributed to transfection enrichment in epithelial cells. In contrast, in a mouse model, we observed the reverse trend in terms of RNA transfection, with no observable protein production in more hydrophobic analogues, whereas hydrophilic copolymers induced the highest transfection in vivo. Overall, our results suggest an important relationship between the vector lipophilicity and RNA transfection in vaccine settings, with polymer biocompatibility potentially a key parameter in effective in vivo protein production.
Collapse
Affiliation(s)
- Pratik Gurnani
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom
| | - Anna K Blakney
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, United Kindom
| | - Roberto Terracciano
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom.,Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Joshua E Petch
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom
| | - Andrew J Blok
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom
| | - Clément R Bouton
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, United Kindom
| | - Paul F McKay
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, United Kindom
| | - Robin J Shattock
- Department of Infectious Disease, Imperial College London, School of Medicine, St Mary's Hospital, Praed Street, London W2 1NY, United Kindom
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kindom
| |
Collapse
|
6
|
Liarou E, Han Y, Sanchez AM, Walker M, Haddleton DM. Rapidly self-deoxygenating controlled radical polymerization in water via in situ disproportionation of Cu(i). Chem Sci 2020; 11:5257-5266. [PMID: 34122982 PMCID: PMC8159280 DOI: 10.1039/d0sc01512a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
Rapidly self-deoxygenating Cu-RDRP in aqueous media is investigated. The disproportionation of Cu(i)/Me6Tren in water towards Cu(ii) and highly reactive Cu(0) leads to O2-free reaction environments within the first seconds of the reaction, even when the reaction takes place in the open-air. By leveraging this significantly fast O2-reducing activity of the disproportionation reaction, a range of well-defined water-soluble polymers with narrow dispersity are attained in a few minutes or less. This methodology provides the ability to prepare block copolymers via sequential monomer addition with little evidence for chain termination over the lifetime of the polymerization and allows for the synthesis of star-shaped polymers with the use of multi-functional initiators. The mechanism of self-deoxygenation is elucidated with the use of various characterization tools, and the species that participate in the rapid oxygen consumption is identified and discussed in detail.
Collapse
Affiliation(s)
- Evelina Liarou
- University of Warwick, Department of Chemistry Library Road Coventry CV4 7AL UK
| | - Yisong Han
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - Ana M Sanchez
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - Marc Walker
- University of Warwick, Department of Physics Coventry CV4 7AL UK
| | - David M Haddleton
- University of Warwick, Department of Chemistry Library Road Coventry CV4 7AL UK
| |
Collapse
|
7
|
Towards novel functional polymers: Ring-opening polymerization of l-lactide with p-tert-butylthiacalix[4]arene derivatives. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Wang Y, Clay A, Nguyen M. ATRP by continuous feeding of activators: Limiting the end-group loss in the polymerizations of methyl methacrylate and styrene. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Maurya DS, Malik A, Feng X, Bensabeh N, Lligadas G, Percec V. Me6-TREN/TREN Mixed-Ligand Effect During SET-LRP in the Catalytically Active DMSO Revitalizes TREN into an Excellent Ligand. Biomacromolecules 2020; 21:1902-1919. [DOI: 10.1021/acs.biomac.9b01765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Devendra S. Maurya
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ayesha Malik
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xiaojing Feng
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Gerard Lligadas
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
10
|
Zhang J, Liarou E, Town J, Li Y, Wemyss AM, Haddleton DM. Aqueous copper-mediated reversible deactivation radical polymerization (RDRP) utilizing polyetheramine derived initiators. Polym Chem 2020. [DOI: 10.1039/d0py00555j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polyetheramines (Jeffamines™) are used in Copper-mediated reversible deactivation radical polymeriation (Cu-RDRP) in water for the synthesis of temperature-responsive block copolymers.
Collapse
Affiliation(s)
- Jirui Zhang
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | - James Town
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Yongguang Li
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
11
|
Ngulube R, Oderinde O, Kalulu M, Pan R, Ejeromedoghene O, Li N, Zhou J. Designing a robust recyclable tricopolymer poly(ionic liquid) macroligand for copper-mediated atom transfer radical polymerization in non-aqueous biphasic systems. NEW J CHEM 2020. [DOI: 10.1039/c9nj05095g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a robust thermoregulated poly(ionic liquid) macroligand was designed, synthesized and applied in an ICAR-based ATRP-TPSC system with efficient recycling/reuse.
Collapse
Affiliation(s)
- Richard Ngulube
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangsu Key Laboratory for Biomass Energy and Material
- Nanjing 210042
- China
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangsu Key Laboratory for Biomass Energy and Material
- Nanjing 210042
- China
| | - Mulenga Kalulu
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangsu Key Laboratory for Biomass Energy and Material
- Nanjing 210042
- China
| | - Rui Pan
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangsu Key Laboratory for Biomass Energy and Material
- Nanjing 210042
- China
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangsu Key Laboratory for Biomass Energy and Material
- Nanjing 210042
- China
| | - Naixu Li
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangsu Key Laboratory for Biomass Energy and Material
- Nanjing 210042
- China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering
- Southeast University
- Jiangsu Key Laboratory for Biomass Energy and Material
- Nanjing 210042
- China
| |
Collapse
|
12
|
Whitfield R, Truong NP, Messmer D, Parkatzidis K, Rolland M, Anastasaki A. Tailoring polymer dispersity and shape of molecular weight distributions: methods and applications. Chem Sci 2019; 10:8724-8734. [PMID: 33552458 PMCID: PMC7844732 DOI: 10.1039/c9sc03546j] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 01/08/2023] Open
Abstract
The width and shape of molecular weight distributions can significantly affect the properties of polymeric materials and thus are key parameters to control. This mini-review aims to critically summarise recent approaches developed to tailor molecular weight distributions and highlights the strengths and limitations of each technique. Special emphasis will also be given to applications where tuning the molecular weight distribution has been used as a strategy to not only enhance polymer properties but also to increase the fundamental understanding behind complex mechanisms and phenomena.
Collapse
Affiliation(s)
- Richard Whitfield
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Nghia P Truong
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Daniel Messmer
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Kostas Parkatzidis
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Manon Rolland
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| | - Athina Anastasaki
- Laboratory of Polymeric Materials , Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , Zurich 8093 , Switzerland .
| |
Collapse
|
13
|
Feng X, Maurya DS, Bensabeh N, Moreno A, Oh T, Luo Y, Lejnieks J, Galià M, Miura Y, Monteiro MJ, Lligadas G, Percec V. Replacing Cu(II)Br2 with Me6-TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP Reveals the Mixed-Ligand Effect. Biomacromolecules 2019; 21:250-261. [DOI: 10.1021/acs.biomac.9b01282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaojing Feng
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Devendra S. Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nabil Bensabeh
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Takahiro Oh
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Yuqing Luo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ja̅nis Lejnieks
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
14
|
Wang Y. ATRP of Methyl Acrylate by Continuous Feeding of Activators Giving Polymers with Predictable End-Group Fidelity. Polymers (Basel) 2019; 11:E1238. [PMID: 31357403 PMCID: PMC6724064 DOI: 10.3390/polym11081238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
Atom transfer radical polymerization (ATRP) of methyl acrylate (MA) was carried out by continuous feeding of Cu(I) activators. Typically, the solvent, the monomer, the initiator, and the CuBr2/Me6TREN deactivator are placed in a Schlenk flask (Me6TREN: tris[2-(dimethylamino)ethyl]amine), while the CuBr/Me6TREN activator is placed in a gas-tight syringe and added to the reaction mixture at a constant addition rate by using a syringe pump. As expected, the polymerization started when Cu(I) was added and stopped when the addition was completed, and polymers with a narrow molecular weight distribution were obtained. The polymerization rate could be easily adjusted by changing the activator feeding rate. More importantly, the loss of chain end-groups could be precisely predicted since each loss of Br from the chain end resulted in the irreversible oxidation of one Cu(I) to Cu(II). The Cu(I) added to the reaction system may undergo many oxidation/reduction cycles in ATRP equilibrium, but would finally be oxidized to Cu(II) irreversibly. Thus, the loss of chain end-groups simply equals the total amount of Cu(I) added. This technique provides a neat way to synthesize functional polymers with known end-group fidelity.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| |
Collapse
|
15
|
Moreno A, Ronda JC, Cádiz V, Galià M, Lligadas G, Percec V. SET-LRP from Programmed Difunctional Initiators Encoded with Double Single-Cleavage and Double Dual-Cleavage Groups. Biomacromolecules 2019; 20:3200-3210. [DOI: 10.1021/acs.biomac.9b00892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Adrian Moreno
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Juan C. Ronda
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Virginia Cádiz
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona 43007, Spain
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
16
|
Flynn S, Dwyer AB, Chambon P, Rannard S. Expanding the monomer scope of linear and branched vinyl polymerisations via copper-catalysed reversible-deactivation radical polymerisation of hydrophobic methacrylates using anhydrous alcohol solvents. Polym Chem 2019. [DOI: 10.1039/c9py00777f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of anhydrous alcohols for Cu-catalysed reversible-deactivation radical polymerisation of a wide range of hydrophobic methacrylates has been explored in detail.
Collapse
Affiliation(s)
- Sean Flynn
- Materials Innovation Factory
- University of Liverpool
- UK
| | | | | | - Steve Rannard
- Materials Innovation Factory
- University of Liverpool
- UK
| |
Collapse
|
17
|
Marathianos A, Liarou E, Anastasaki A, Whitfield R, Laurel M, Wemyss AM, Haddleton DM. Photo-induced copper-RDRP in continuous flow without external deoxygenation. Polym Chem 2019. [DOI: 10.1039/c9py00945k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photo-induced Cu-RDRP of acrylates in a continuous flow reactor without the need for deoxygenation or externally added reagents.
Collapse
Affiliation(s)
| | - Evelina Liarou
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | | | | | - Matthew Laurel
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | - Alan M. Wemyss
- Department of Chemistry
- University of Warwick Library Road
- Coventry
- UK
| | | |
Collapse
|
18
|
van Ravensteijn BGP, Bou Zerdan R, Helgeson ME, Hawker CJ. Minimizing Star–Star Coupling in Cu(0)-Mediated Controlled Radical Polymerizations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Moreno A, Galià M, Lligadas G, Percec V. SET-LRP in Biphasic Mixtures of the Nondisproportionating Solvent Hexafluoroisopropanol with Water. Biomacromolecules 2018; 19:4480-4491. [DOI: 10.1021/acs.biomac.8b01381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Marina Galià
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili, Tarragona, Spain
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
20
|
Whitfield R, Anastasaki A, Truong NP, Cook AB, Omedes-Pujol M, Loczenski Rose V, Nguyen TAH, Burns JA, Perrier S, Davis TP, Haddleton DM. Efficient Binding, Protection, and Self-Release of dsRNA in Soil by Linear and Star Cationic Polymers. ACS Macro Lett 2018; 7:909-915. [PMID: 35650964 DOI: 10.1021/acsmacrolett.8b00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Double stranded RNA (dsRNA) exhibits severe degradation within 3 days in live soil, limiting its potential application in crop protection. Herein we report the efficient binding, protection, and self-release of dsRNA in live soil through the usage of a cationic polymer. Soil stability assays show that linear poly(2-(dimethylamino)ethyl acrylate) can delay the degradation of dsRNA by up to 1 week while the star shaped analogue showed an increased stabilization of dsRNA by up to 3 weeks. Thus, the architecture of the polymer can significantly affect the lifetime of dsRNA in soil. In addition, the hydrolysis and dsRNA binding and release profiles of these polymers were carefully evaluated and discussed. Importantly, hydrolysis could occur independently of environmental conditions (e.g., different pH, different temperature) showing the potential for many opportunities in agrochemicals where protection and subsequent self-release of dsRNA in live soil is required.
Collapse
Affiliation(s)
- Richard Whitfield
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Athina Anastasaki
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Nghia P. Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Alexander B. Cook
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
| | - Marta Omedes-Pujol
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Vanessa Loczenski Rose
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Tuan A. H. Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James A. Burns
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Sébastien Perrier
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, U.K
| | - Thomas P. Davis
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, U.K
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
21
|
Yan X, Li J, Ren T. Synthesis of well-defined star, star-block, and miktoarm star biodegradable polymers based on PLLA and PCL by one-pot azide-alkyne click reaction. RSC Adv 2018; 8:29464-29475. [PMID: 35547998 PMCID: PMC9084564 DOI: 10.1039/c8ra06262e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
Based on the "arm-first" strategy, ring-opening polymerization (ROP) and one-pot azide-alkyne click reaction, well-defined star-shaped polymers with different architectures have been successfully synthesized, including the star homopolymers four-arm star-shaped polycaprolactone (4sPCL) and four-arm star-shaped poly(l-lactic acid) (4sPLLA), star-block copolymer 4sPCL-b-PLLA and miktoarm star-shaped copolymer PCL2PLLA2. The star homopolymers 4sPCL and 4sPLLA were synthesized by a click reaction of an azide small molecule initiator and HC[triple bond, length as m-dash]C-PCL or HC[triple bond, length as m-dash]C-PLLA. The star-block copolymer 4sPCL-b-PLLA was synthesized by a click reaction of an azide small molecule initiator and the block copolymer HC[triple bond, length as m-dash]C-PCL-b-PLLA. The miktoarm star polymer PCL2PLLA2 was synthesized by a one-pot azide-alkyne click reaction of simultaneous addition of equal proportions of HC[triple bond, length as m-dash]C-PCL and HC[triple bond, length as m-dash]C-PLLA. The structures of these star-shaped polymers have been confirmed by NMR, FT-IR and GPC. Furthermore, the melting and crystallization behaviors investigated using DSC and WXRD also confirm the formation of star-shaped polymers with different architectures.
Collapse
Affiliation(s)
- Xiaoqi Yan
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| | - Tianbin Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| |
Collapse
|
22
|
Johner A, Lee NK. The Daoud and Cotton blob model and the interaction of star-shaped polymers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:88. [PMID: 30039228 DOI: 10.1140/epje/i2018-11698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Since it was first proposed in 1982, the Daoud and Cotton (DC) model for star-shaped polymers was intensively used also for self-assembled copolymers and small colloids grafted with long polymers. We try to clarify the position of the DC model and focus on the star partition function which plays a central role in self-assembly and gives access to the star-star interaction. While the predicted star-star interaction agrees with scattering data by Likos et al. (Phys. Rev. Lett. 80, 4450 (1998)), an extensive simulation by Hsu et al. (Macromolecules, 37, 4658 (2004)) does not recover the prediction for the partition function. We try to reconcile this seemingly conflicting results. We discuss star-star interactions, star free energy in θ -solvents, mixing of A/B branches in copolymer stars, within or beyond the Daoud and Cotton blob model.
Collapse
Affiliation(s)
- Albert Johner
- Institut Charles Sadron CNRS, Université de Strasbourg, Rue du Loess, 67034, Strasbourg Cedex 2, France.
| | - Nam-Kyung Lee
- Department of Physics, Sejong University, 05006, Seoul, South Korea
| |
Collapse
|
23
|
Schönemann E, Laschewsky A, Rosenhahn A. Exploring the Long-Term Hydrolytic Behavior of Zwitterionic Polymethacrylates and Polymethacrylamides. Polymers (Basel) 2018; 10:E639. [PMID: 30966673 PMCID: PMC6403559 DOI: 10.3390/polym10060639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
The hydrolytic stability of polymers to be used for coatings in aqueous environments, for example, to confer anti-fouling properties, is crucial. However, long-term exposure studies on such polymers are virtually missing. In this context, we synthesized a set of nine polymers that are typically used for low-fouling coatings, comprising the well-established poly(oligoethylene glycol methylether methacrylate), poly(3-(N-2-methacryloylethyl-N,N-dimethyl) ammoniopropanesulfonate) ("sulfobetaine methacrylate"), and poly(3-(N-3-methacryamidopropyl-N,N-dimethyl)ammoniopropanesulfonate) ("sulfobetaine methacrylamide") as well as a series of hitherto rarely studied polysulfabetaines, which had been suggested to be particularly hydrolysis-stable. Hydrolysis resistance upon extended storage in aqueous solution is followed by ¹H NMR at ambient temperature in various pH regimes. Whereas the monomers suffered slow (in PBS) to very fast hydrolysis (in 1 M NaOH), the polymers, including the polymethacrylates, proved to be highly stable. No degradation of the carboxyl ester or amide was observed after one year in PBS, 1 M HCl, or in sodium carbonate buffer of pH 10. This demonstrates their basic suitability for anti-fouling applications. Poly(sulfobetaine methacrylamide) proved even to be stable for one year in 1 M NaOH without any signs of degradation. The stability is ascribed to a steric shielding effect. The hemisulfate group in the polysulfabetaines, however, was found to be partially labile.
Collapse
Affiliation(s)
- Eric Schönemann
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| | - André Laschewsky
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, Geiselberg-Str. 69, D-14476 Potsdam-Golm, Germany.
| | - Axel Rosenhahn
- Institute of Analytical Chemistry-Biogrenzflächen, Ruhr-Universität Bochum, Universitätsstr. 150, D-44801 Bochum, Germany.
| |
Collapse
|
24
|
Mielańczyk A, Kupczak M, Burek M, Mielańczyk Ł, Klymenko O, Wandzik I, Neugebauer D. Functional (mikto)stars and star-comb copolymers from d-gluconolactone derivative: An efficient route for tuning the architecture and responsiveness to stimuli. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Moreno A, Jezorek RL, Liu T, Galià M, Lligadas G, Percec V. Macromonomers, telechelics and more complex architectures of PMA by a combination of biphasic SET-LRP and biphasic esterification. Polym Chem 2018. [DOI: 10.1039/c8py00150b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macromonomers and telechelics of PMA via biphasic SET-LRP and biphasic esterification with potassium acrylate.
Collapse
Affiliation(s)
- Adrian Moreno
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Ryan L. Jezorek
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Tong Liu
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Marina Galià
- Laboratory of Sustainable Polymers
- Department of Analytical Chemistry and Organic Chemistry
- University Rovira i Virgili
- Tarragona
- Spain
| | - Gerard Lligadas
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories
- Department of Chemistry
- University of Pennsylvania
- Philadelphia
- USA
| |
Collapse
|
26
|
Jones GR, Whitfield R, Anastasaki A, Risangud N, Simula A, Keddie DJ, Haddleton DM. Cu(0)-RDRP of methacrylates in DMSO: importance of the initiator. Polym Chem 2018. [DOI: 10.1039/c7py01196b] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The controlled radical polymerization of methacrylates via Cu(0)-mediated RDRP is challenging in comparison to acrylates with most reports illustrating higher dispersities, lower monomer conversions and poorer end group fidelity relative to the acrylic analogues.
Collapse
Affiliation(s)
- Glen R. Jones
- University of Warwick
- Department of Chemistry
- Coventry
- UK
| | | | - Athina Anastasaki
- University of Warwick
- Department of Chemistry
- Coventry
- UK
- Materials Research Laboratory
| | | | - Alexandre Simula
- POLYMAT and Kimika Aplikatua Saila
- University of the Basque Country UPV/EHU
- Donostia/San Sebastián
- Spain
| | - Daniel J. Keddie
- University of Wolverhampton
- School of Biology
- Chemistry and Forensic Science
- Wolverhampton
- UK
| | | |
Collapse
|
27
|
Whitfield R, Anastasaki A, Jones GR, Haddleton DM. Cu(0)-RDRP of styrene: balancing initiator efficiency and dispersity. Polym Chem 2018. [DOI: 10.1039/c8py00814k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimisation of all components within Cu(0)-wire mediated polymerisation of styrene is illustrated yielding well-defined polystyrene with enhanced initiator efficiency and dispersity at higher molecular weights.
Collapse
|
28
|
Cook AB, Peltier R, Hartlieb M, Whitfield R, Moriceau G, Burns JA, Haddleton DM, Perrier S. Cationic and hydrolysable branched polymers by RAFT for complexation and controlled release of dsRNA. Polym Chem 2018. [DOI: 10.1039/c8py00804c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complexation and sustained release of dsRNA from highly branched polymers prepared via RAFT polymerisation and copolymerisation of the monomers DMAEA, DMAPA, and DMAEMA, is reported.
Collapse
Affiliation(s)
| | - Raoul Peltier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | | | - James A. Burns
- Syngenta
- Jealott's Hill International Research Centre
- Berkshire
- UK
| | - David M. Haddleton
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
29
|
Lligadas G, Grama S, Percec V. Single-Electron Transfer Living Radical Polymerization Platform to Practice, Develop, and Invent. Biomacromolecules 2017; 18:2981-3008. [DOI: 10.1021/acs.biomac.7b01131] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
30
|
Supported Cu 0 nanoparticles catalyst for controlled radical polymerization reaction and block-copolymer synthesis. Sci Rep 2017; 7:10345. [PMID: 28871167 PMCID: PMC5583343 DOI: 10.1038/s41598-017-10760-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022] Open
Abstract
The synthesis of Cu0 nanoparticles on different supports and their activity in controlled living radical polymerization processes is presented. The type of support influences the final size of the copper nanoparticles as well as their adhesion to the support. These aspects have a direct influence on the characteristics of the polymers obtained. The best results were obtained for SiO2 particles, which afforded a good molecular weight distribution (Mw/Mn = 1.25). The activity, recovery and recycling of the catalyst was explored for ultrafast polymerization reaction of butyl acrylate. Further, the terminal bromine reactivity was used for the synthesis of a block poly(n butyl acrylate-block-styrene). The influence of ligand type on the control of the reaction was studied. Also, a straightforward polymerization procedure without any ligand afforded a polydispersity value of 1.38.
Collapse
|
31
|
Voorhaar L, Hoogenboom R. One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0)-Mediated Polymerization. Polymers (Basel) 2017; 9:E320. [PMID: 30970996 PMCID: PMC6418976 DOI: 10.3390/polym9080320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022] Open
Abstract
Block copolymers containing functionalized monomers, for example those containing charged groups, can be used for many purposes, one of which is the design of polymeric supramolecular materials based on electrostatic interactions. In this paper the synthesis of diblock copolymers and ABA-triblock copolymers containing poly(n-butyl acrylate) as a first or middle block and poly(2-(dimethylamino)ethyl acrylate), poly(1-ethoxyethyl acrylate) and poly(1-ethoxyethyl-2-carboxyethyl acrylate) as second or outer blocks, resulting in block copolymers that can contain positive or negative charges, is reported. The polymerizations were performed and optimized via one-pot sequential monomer addition reactions via Cu(0)-mediated polymerization using an automated parallel synthesizer. Different initiators, monomer concentrations and polymerization times were tested. While a bromide-containing initiator led to the best results for most monomers, when polymerizing 2-(dimethylamino)ethyl acrylate the use of a chloride-containing initiator was necessary. Due to the slower polymerization using this initiator, a longer polymerization time was needed before addition of the second monomer. Using the optimized conditions, the diblock and triblock copolymers could be synthesized with good control over molecular weight and dispersities around 1.1 were obtained.
Collapse
Affiliation(s)
- Lenny Voorhaar
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
- SIM vzw, Technologiepark 935, 9052 Zwijnaarde, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| |
Collapse
|
32
|
Tanaka J, Gleinich AS, Zhang Q, Whitfield R, Kempe K, Haddleton DM, Davis TP, Perrier S, Mitchell DA, Wilson P. Specific and Differential Binding of N-Acetylgalactosamine Glycopolymers to the Human Macrophage Galactose Lectin and Asialoglycoprotein Receptor. Biomacromolecules 2017; 18:1624-1633. [PMID: 28418238 DOI: 10.1021/acs.biomac.7b00228] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A range of glycopolymers composed of N-acetylgalactosamine were prepared via sequential Cu(I)-mediated polymerization and alkyne-azide click (CuAAC). The resulting polymers were shown, via multichannel surface plasmon resonance, to interact specifically with human macrophage galactose lectin (MGL; CD301) with high affinity (KD = 1.11 μM), but they did not bind to the mannose/fucose-selective human lectin dendritic-cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN; CD209). The effect of sugar ligand valency on the binding (so-called "glycoside cluster effect") of poly(N-acetylgalactosamine) to MGL was investigated by varying first the polymer chain length (DP: 100, 64, 40, 23, 12) and then the architecture (4- and 8-arm star glycopolymers). The chain length did not have a significant effect on the binding to MGL (KD = 0.17-0.52 μM); however, when compared to a hepatic C-type lectin of a similar monosaccharide specificity, the asialoglycoprotein receptor (ASGPR), the binding affinity was more noticeably affected (KD = 0.37- 6.65 μM). These data suggest that known differences in the specific configuration/orientation of the carbohydrate recognition domains of MGL and ASGPR are responsible for the differences in binding observed between the different polymers of varied chain length and architecture. In the future, this model has the potential to be employed for the development of tissue-selective delivery systems.
Collapse
Affiliation(s)
- Joji Tanaka
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Anne S Gleinich
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick , CV2 2DX Coventry, United Kingdom
| | - Qiang Zhang
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Richard Whitfield
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom
| | - Kristian Kempe
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M Haddleton
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P Davis
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Sébastien Perrier
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Daniel A Mitchell
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick , CV2 2DX Coventry, United Kingdom
| | - Paul Wilson
- Chemistry Department, University of Warwick , Library Road, CV4 7AL Coventry, United Kingdom.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
33
|
Augustine KF, Ribelli TG, Fantin M, Krys P, Cong Y, Matyjaszewski K. Activation of alkyl halides at the Cu0
surface in SARA ATRP: An assessment of reaction order and surface mechanisms. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kyle F. Augustine
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| | - Thomas G. Ribelli
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| | - Marco Fantin
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| | - Pawel Krys
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| | - Yidan Cong
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| | - Krzysztof Matyjaszewski
- Department of Chemistry; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh Pennsylvania 15213
| |
Collapse
|
34
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
35
|
Whitfield R, Anastasaki A, Nikolaou V, Jones GR, Engelis NG, Discekici EH, Fleischmann C, Willenbacher J, Hawker CJ, Haddleton DM. Universal Conditions for the Controlled Polymerization of Acrylates, Methacrylates, and Styrene via Cu(0)-RDRP. J Am Chem Soc 2017; 139:1003-1010. [DOI: 10.1021/jacs.6b11783] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Richard Whitfield
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Athina Anastasaki
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Vasiliki Nikolaou
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Glen R. Jones
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Nikolaos G. Engelis
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Emre H. Discekici
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Carolin Fleischmann
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Johannes Willenbacher
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - David M. Haddleton
- University of Warwick, Chemistry Department, Library Road, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
36
|
Xu W, Lu F, Chen S, Lin X, Zhou S, Wu W. Synthesis of polymer macrogels with rapid and significant response to glucose concentration changes. RSC Adv 2017. [DOI: 10.1039/c7ra11920h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymer macrogels with rapid and significant responses to glucose concentration changes were made of a poly(phenylboronic acid) microgel array tethered chemically to bridging polymers.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Fan Lu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Shoumin Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Xuezhen Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| | - Shiming Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei 230026
- China
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- The Key Laboratory for Chemical Biology of Fujian Province
- Department of Chemistry
- College of Chemistry and Chemical Engineering
| |
Collapse
|
37
|
Guo S, Zhang Q, Wang D, Wang L, Lin F, Wilson P, Haddleton DM. Bioinspired coating of TiO2nanoparticles with antimicrobial polymers by Cu(0)-LRP: grafting to vs. grafting from. Polym Chem 2017. [DOI: 10.1039/c7py01471f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Titanium dioxide nanoparticles coated with non-leachable biocides were prepared by Cu(0)-LRP of tertiary-amine-containing monomersvia“grafting to” and “grafting from” strategies.
Collapse
Affiliation(s)
- Shutong Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Donghao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Lu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Fang Lin
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Paul Wilson
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
38
|
Xue H, Peng L, Dong Y, Zheng Y, Luan Y, Hu X, Chen G, Chen H. Synthesis of star-glycopolymers by Cu(0)-mediated radical polymerisation in the absence and presence of oxygen. RSC Adv 2017. [DOI: 10.1039/c6ra28763h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Star glycopolymers were synthesized in the absence and presence of oxygen, and show strong binding to specific lectins.
Collapse
Affiliation(s)
- Hui Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Lun Peng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yuqing Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| | - Yafei Luan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiang Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
39
|
Rolph MS, Pitto-Barry A, O'Reilly RK. The hydrolytic behavior of N,N′-(dimethylamino)ethyl acrylate-functionalized polymeric stars. Polym Chem 2017. [DOI: 10.1039/c7py00219j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Well-definedN,N′-(dimethylamino)ethyl acrylate (DMAEA) functionalized polymeric stars have been synthesizedviaan arm-first approach.
Collapse
|