1
|
Kirkpatrick BE, Anseth KS, Hebner TS. Diverse reactivity of maleimides in polymer science and beyond. POLYM INT 2025; 74:296-306. [PMID: 40255264 PMCID: PMC12007691 DOI: 10.1002/pi.6715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 04/22/2025]
Abstract
Maleimides are remarkably versatile functional groups, capable of participating in homo- and copolymerizations, Diels-Alder and (photo)cycloadditions, Michael additions, and other reactions. Their reactivity has afforded materials ranging from polyimides with high upper service temperatures to hydrogels for regenerative medicine applications. Moreover, maleimides have proven to be an enabling chemistry for pharmaceutical development and bioconjugation via straightforward modification of cysteine residues. To exert spatiotemporal control over reactions with maleimides, multiple approaches have been developed to photocage nucleophiles, dienes, and dipoles. Additionally, further substitution of the maleimide alkene (e.g., mono- and di-halo-, thio-, amino-, and methyl-maleimides, among other substituents) confers tunable reactivity and dynamicity, as well as responsive mechanical and optical properties. In this mini-review, we highlight the diverse functionality of maleimides, underscoring their notable impact in polymer science. This moiety and related heterocycles will play an important role in future innovations in chemistry, biomedical, and materials research.
Collapse
Affiliation(s)
- Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
- Materials Science and Engineering Program, University of Colorado Boulder
| | | |
Collapse
|
2
|
Babanyinah GK, Bhadran A, Polara H, Wang H, Shah T, Biewer MC, Stefan MC. Maleimide functionalized polycaprolactone micelles for glutathione quenching and doxorubicin delivery. Chem Sci 2024; 15:9987-10001. [PMID: 38966382 PMCID: PMC11220601 DOI: 10.1039/d4sc01625d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
High glutathione production is known to be one of the defense mechanisms by which many cancer cells survive elevated oxidative stress. By explicitly targeting glutathione in these cancer cells and diminishing its levels, oxidative stress can be intensified, ultimately triggering apoptosis or programmed cell death. Herein, we developed a novel approach by creating maleimide-functionalized polycaprolactone polymers, specifically using 2,3-diiodomaleimide functionality to reduce the level of glutathione in cancer cells. Polycaprolactone was chosen to conjugate the 2,3-diiodomaleimide functionality due to its biodegradable and biocompatible properties. The amphiphilic block copolymer was synthesized using PEG as a macroinitiator to make corresponding polymeric micelles. The resulting 2,3-diiodomaleimide-conjugated polycaprolactone micelles effectively quenched glutathione, even at low concentrations (0.01 mg mL-1). Furthermore, we loaded these micelles with the anticancer drug doxorubicin (DOX), which exhibited pH-dependent drug release. We obtained a loading capacity (LC) of 3.5% for the micelles, one of the highest LC reported among functional PCL-based micelles. Moreover, the enhanced LC doesn't affect their release profile. Cytotoxicity experiments demonstrated that empty and DOX-loaded micelles inhibited cancer cell growth, with the DOX-loaded micelles displaying the highest cytotoxicity. The ability of the polymer to quench intracellular GSH was also confirmed. This approach of attaching maleimide to polycaprolactone polymers shows promise in depleting elevated glutathione levels in cancer cells, potentially improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| |
Collapse
|
3
|
Jiang S, Huang H. Mechanism-Guided Design of Chain-Growth Click Polymerization Based on a Thiol-Michael Reaction. Angew Chem Int Ed Engl 2023; 62:e202217895. [PMID: 36734515 DOI: 10.1002/anie.202217895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
The development of chain-growth click polymerization is challenging yet desirable in modern polymer chemistry. In this work, we reported a novel chain-growth click polymerization based on the thiol-Michael reaction. This polymerization could be performed efficiently under ambient conditions and spatiotemporally regulated by ultraviolet light, allowing the synthesis of sulfur-containing polymers in excellent yields and high molecular weights. Density functional theory calculations indicated that the thiolate addition to the Michael acceptor is the rate-determining step, and introducing the phenyl group could facilitate the chain-growth process. This polymerization is a new type of chain-growth click polymerization, which will provide a unique approach to creating functional polymers.
Collapse
Affiliation(s)
- Suqiu Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Niño-Ramírez VA, Insuasty-Cepeda DS, Rivera-Monroy ZJ, Maldonado M. Evidence of Isomerization in the Michael-Type Thiol-Maleimide Addition: Click Reaction between L-Cysteine and 6-Maleimidehexanoic Acid. Molecules 2022; 27:molecules27165064. [PMID: 36014302 PMCID: PMC9415311 DOI: 10.3390/molecules27165064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
The reaction between L-cysteine (Cys) and 6-maleimidohexanoic acid (Mhx) in an aqueous medium at different levels of pH was analyzed via RP-HPLC, finding the presence of two reaction products throughout the evaluated pH range. By means of solid-phase extraction (SPE), it was possible to separate the products and obtain isolated profiles enriched up to 80%. The products were analyzed individually through mass spectrometry, DAD-HPLC, NMR 1H, 13C, and two-dimensional evidence of isomerization between the hydrogen atoms of the α-amino and the thiol group present in the cysteine. Thus, it was concluded that the products obtained corresponded to a mixture of the isomer Cys-S-Mhx, where the adduct is formed by a thioether bond, and the isomer Cys-NH-Mhx, in which the union is driven by the amino group. We consider that the phenomenon of isomerization is an important finding, since it has not previously been reported for this reaction.
Collapse
Affiliation(s)
| | | | | | - Mauricio Maldonado
- Correspondence: (Z.J.R.-M.); (M.M.); Tel.: +57-1-3165000 (ext. 14436) (M.M.)
| |
Collapse
|
5
|
Farh MK, Gruschwitz FV, Ziegenbalg N, Abul-Futouh H, Görls H, Weigand W, Brendel JC. Dual Function of β-hydroxy Dithiocinnamic Esters: RAFT Agent and Ligand for Metal Complexation. Macromol Rapid Commun 2022; 43:e2200428. [PMID: 35751415 DOI: 10.1002/marc.202200428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/12/2022] [Indexed: 11/06/2022]
Abstract
The reversible addition-fragmentation chain-transfer (RAFT) process has become a versatile tool for the preparation of defined polymers tolerating a large variety of functional groups. Several dithioesters, trithiocarbonates, xanthates, or dithiocarbamates have been developed as effective chain transfer agents (CTA), but only few examples have been reported, where the resulting end groups are directly considered for a secondary use besides controlling the polymerization. We here demonstrate that β-hydroxy dithiocinnamic esters represent a hitherto overlooked class of materials, which were originally designed for the complexation of transition metals but might as well act as reversible CTA. Modified with a suitable leaving group (R-group), these vinyl conjugated dithioesters indeed provide reasonable control over the polymerization of acrylates, acrylamides, or styrene via the RAFT process. Kinetic studies revealed linear evolutions of molar mass with conversion, while different substituents on the aromatic unit had only a minor influence. Block extensions prove the livingness of the polymer chains, although extended polymerization times may lead to side reactions. The resulting dithiocinnamic ester end groups are still able to form complexes with platinum, which verifies that the structural integrity of the end group is maintained. These findings open a versatile new route to tailor-made polymer bound metal complexes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Micheal K Farh
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany.,Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt.,Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Nicole Ziegenbalg
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Hassan Abul-Futouh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Helmar Görls
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Wolfgang Weigand
- Department of Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
6
|
Kumar R. Materiomically Designed Polymeric Vehicles for Nucleic Acids: Quo Vadis? ACS APPLIED BIO MATERIALS 2022; 5:2507-2535. [PMID: 35642794 DOI: 10.1021/acsabm.2c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite rapid advances in molecular biology, particularly in site-specific genome editing technologies, such as CRISPR/Cas9 and base editing, financial and logistical challenges hinder a broad population from accessing and benefiting from gene therapy. To improve the affordability and scalability of gene therapy, we need to deploy chemically defined, economical, and scalable materials, such as synthetic polymers. For polymers to deliver nucleic acids efficaciously to targeted cells, they must optimally combine design attributes, such as architecture, length, composition, spatial distribution of monomers, basicity, hydrophilic-hydrophobic phase balance, or protonation degree. Designing polymeric vectors for specific nucleic acid payloads is a multivariate optimization problem wherein even minuscule deviations from the optimum are poorly tolerated. To explore the multivariate polymer design space rapidly, efficiently, and fruitfully, we must integrate parallelized polymer synthesis, high-throughput biological screening, and statistical modeling. Although materiomics approaches promise to streamline polymeric vector development, several methodological ambiguities must be resolved. For instance, establishing a flexible polymer ontology that accommodates recent synthetic advances, enforcing uniform polymer characterization and data reporting standards, and implementing multiplexed in vitro and in vivo screening studies require considerable planning, coordination, and effort. This contribution will acquaint readers with the challenges associated with materiomics approaches to polymeric gene delivery and offers guidelines for overcoming these challenges. Here, we summarize recent developments in combinatorial polymer synthesis, high-throughput screening of polymeric vectors, omics-based approaches to polymer design, barcoding schemes for pooled in vitro and in vivo screening, and identify materiomics-inspired research directions that will realize the long-unfulfilled clinical potential of polymeric carriers in gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemical & Biological Engineering, Colorado School of Mines, 1613 Illinois St, Golden, Colorado 80401, United States
| |
Collapse
|
7
|
Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022; 623:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Adagen, an enzyme replacement treatment for adenosine deaminase deficiency, was the first protein-polymer conjugate to be approved in early 1990s. Post this regulatory approval, numerous polymeric drugs and polymeric nanoparticles have entered the market as advanced or next-generation polymer-based therapeutics, while many others have currently been tested clinically. The polymer conjugation to therapeutic moiety offers several advantages, like enhanced solubilization of drug, controlled release, reduced immunogenicity, and prolonged circulation. The present review intends to highlight considerations in the design of therapeutically effective polymer-drug conjugates (PDCs), including the choice of linker chemistry. The potential synthetic strategies to formulate PDCs have been discussed along with recent advancements in the different types of PDCs, i.e., polymer-small molecular weight drug conjugates, polymer-protein conjugates, and stimuli-responsive PDCs, which are under clinical/preclinical investigation. Current impediments and regulatory hurdles hindering the clinical translation of PDC into effective therapeutic regimens for the amelioration of disease conditions have been addressed.
Collapse
Affiliation(s)
- Ankit Javia
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Jigar Vanza
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Denish Bardoliwala
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India; Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Maharashtra-425405, Indi
| | - Mrunali Patel
- Department of Pharmaceutics, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat-388421, India
| | - Hetal Thakkar
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat-390001, India.
| |
Collapse
|
8
|
Feitosa SGD, Maciel LG, Anjos JV. Biologically Active Thio‐pyrimidinones from Base‐catalyzed
Thiol‐Ene
Coupling with Maleimides. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Xu J, Abetz V. Double thermoresponsive graft copolymers with different chain ends: feasible precursors for covalently crosslinked hydrogels. SOFT MATTER 2022; 18:2082-2091. [PMID: 35199817 DOI: 10.1039/d1sm01692j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The tailored synthesis of graft copolymers from acrylic and methacrylic monomers can be accomplished solely through photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization. Samples with poly[oligo(ethylene glycol) methacrylate] (POEGMA) backbones synthesized under green light irradiation and poly(N-isopropylacrylamide) (PNIPAM) side chains growing under blue light irradiation are presented. As monitored by temperature-dependent dynamic light scattering (DLS) measurements and temperature-variable nuclear magnetic resonance (NMR) spectroscopy, the architecture of the graft copolymers allows unique two-step lower critical solution temperature (LCST) transitions in aqueous solutions. Meanwhile, different end-groups introduced by the corresponding RAFT agents affect the detailed thermoresponsive behavior remarkably. This RAFT strategy shows more advantages when the multiple trithiocarbonate groups are converted into thiol reactive pyridyl disulfide (PDS) groups via a facile post-polymerization modification. The PDS-terminated graft copolymer can then be regarded as a usable precursor for various applications, such as thermoresponsive hydrogels.
Collapse
Affiliation(s)
- Jingcong Xu
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| |
Collapse
|
10
|
Zhou D, Zhu LW, Wu BH, Xu ZK, Wan LS. End-functionalized polymers by controlled/living radical polymerizations: synthesis and applications. Polym Chem 2022. [DOI: 10.1039/d1py01252e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review focuses on end-functionalized polymers synthesized by controlled/living radical polymerizations and the applications in fields including bioconjugate formation, surface modification, topology construction, and self-assembly.
Collapse
Affiliation(s)
- Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang-Wei Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bai-Heng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, MOE Engineering Research Center of Membrane and Water Treatment Technology, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Syntheses of benzhydryl 2-propanoyl-functionalized trithiocarbonates and its use as chain transfer agents in the RAFT polymerization of styrene. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Zhai C, Azhar U, Yue W, Dou Y, Zhang L, Yang X, Zhang Y, Xu P, Zong C, Zhang S. Preparation and Insights of Smart Foams with Phototunable Foamability Based on Azobenzene-Containing Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15423-15429. [PMID: 33300789 DOI: 10.1021/acs.langmuir.0c03028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Smart foams with tunable foamability exhibit superb applications in many fields such as colloidal and interface science. Herein, we have synthesized an azobenzene-containing surfactant with excellent photoresponsiveness by a simple thiol-maleimide click reaction between thioglycolic acid and 4-(N-maleimide) azobenzene (MAB). The structure and the photoresponsive behavior of the novel surfactant are characterized. Depending on the solution concentration, the synthesized surfactant demonstrated various speeds for the trans/cis photoisomerization varying from 9 to 24 s for the given concentration range and excellent reversible photoisomerization cycling stability (more than 20 cycles) upon light irradiation. Based on these conformational switches, a series of phototriggered obvious surface properties (e.g., critical micelle concentration (CMC), surface tension (γ), and surface excess concentration (Γ)) changes of the surfactant are achieved. More specifically, the smart foam system with tunable foamability is realized. As-formed smart foams with rapid photocontrolled reversible foaming/defoaming transition and excellent cycling stability make them very attractive candidates for applications in wastewater treatment, green textile, oil extraction, and emulsification.
Collapse
Affiliation(s)
- Congcong Zhai
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Department of Polymer Engineering, National Textile University, Karachi Campus, Karachi 74900, Pakistan
| | - Wence Yue
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yingqian Dou
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Luqing Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoyu Yang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yabin Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peiming Xu
- Taishan Sports Industry Group Co., Ltd., Dezhou 253600, China
| | - Chuanyong Zong
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Taishan Sports Industry Group Co., Ltd., Dezhou 253600, China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
13
|
Nghiem TL, Chakroun R, Janoszka N, Chen C, Klein K, Wong CK, Gröschel AH. pH-Controlled Hierarchical Assembly/Disassembly of Multicompartment Micelles in Water. Macromol Rapid Commun 2020; 41:e2000301. [PMID: 32613695 DOI: 10.1002/marc.202000301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Indexed: 12/21/2022]
Abstract
Multicompartment micelles (MCMs) have become attractive drug delivery systems as they allow the separate storage of two or more incompatible cargos in their core compartments (e.g., drugs and dyes for imaging). A recent hierarchical self-assembly process for hydrophobic terpolymers in organic solvents showed the ability to form very homogeneous MCM populations, yet the transfer of this process into water requires a better understanding of the formation mechanism and influence of chain mobility during assembly. Here, the synthesis of a linear poly(oligo(ethylene glycol) methacrylate)-block-poly(benzyl acrylate)-block-poly(4-vinylpyridine) (POEGMA-b-PBzA-b-P4VP) triblock terpolymer by reversible addition-fragmentation chain transfer (RAFT) polymerization is reported as well as its step-wise assembly into MCMs in water with POEGMA corona, PBzA patches, and P4VP core. Reversible assembly/disassembly of the MCMs is investigated through protonation/deprotonation of the P4VP core. Interestingly, the low glass transition temperature (Tg ) of the hydrophobic PBzA middle block causes MCMs to directly disassemble into molecularly dissolved chains instead of patchy micelles due to mechanical stress from electrosteric repulsion of the protonated P4VP corona chains. In addition, pH resistant MCMs are created by core-crosslinking and fluorescent properties are added by covalent anchoring of fluorescent dyes via straightforward click chemistry.
Collapse
Affiliation(s)
- Tai-Lam Nghiem
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Münster, 48149, Germany
| | - Ramzi Chakroun
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Münster, 48149, Germany
| | - Nicole Janoszka
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Münster, 48149, Germany
| | - Chen Chen
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Münster, 48149, Germany
| | - Kai Klein
- Inorganic Chemistry, University of Duisburg-Essen, Essen, 45117, Germany
| | - Chin Ken Wong
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Münster, 48149, Germany
| | - André H Gröschel
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Münster, 48149, Germany
| |
Collapse
|
14
|
Kim J, Jung HY, Park MJ. End-Group Chemistry and Junction Chemistry in Polymer Science: Past, Present, and Future. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02293] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jihoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Ha Young Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| |
Collapse
|
15
|
Ye Q, Zheng P, Ao X, Yao D, Lei Z, Deng Y, Wang C. Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Alaboalirat M, Qi L, Arrington KJ, Qian S, Keum JK, Mei H, Littrell KC, Sumpter BG, Carrillo JMY, Verduzco R, Matson JB. Amphiphilic Bottlebrush Block Copolymers: Analysis of Aqueous Self-Assembly by Small-Angle Neutron Scattering and Surface Tension Measurements. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02366] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Luqing Qi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Kyle J. Arrington
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | | | - Hao Mei
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | | | | | | | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Schäfer O, Barz M. Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers. Chemistry 2018; 24:12131-12142. [DOI: 10.1002/chem.201800681] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Olga Schäfer
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
18
|
Ting JM, Wu H, Herzog-Arbeitman A, Srivastava S, Tirrell MV. Synthesis and Assembly of Designer Styrenic Diblock Polyelectrolytes. ACS Macro Lett 2018; 7:726-733. [PMID: 35632955 DOI: 10.1021/acsmacrolett.8b00346] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Harnessing molecular design principles toward functional applications of ion-containing macromolecules relies on diversifying experimental data sets of well-understood materials. Here, we report a simple, tunable framework for preparing styrenic polyelectrolytes, using aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization in a parallel synthesis approach. A series of diblock polycations and polyanions were RAFT chain-extended from poly(ethylene oxide) (PEO) using (vinylbenzyl)trimethylammonium chloride (PEO-b-PVBTMA) and sodium 4-styrenesulfonate (PEO-b-PSS), with varying neutral PEO block lengths, charged styrenic block lengths, and RAFT end-group identity. The materials characterization and kinetics study of chain growth exhibited control of the molar mass distribution for both systems. These block polyelectrolytes were also demonstrated to form polyelectrolyte complex (PEC) driven self-assemblies. We present two simple outcomes of micellization to show the importance of polymer selection from a broadened pool of polyelectrolyte candidates: (i) uniform PEC-core micelles comprising PEO-b-PVBTMA and poly(acrylic acid) and (ii) PEC nanoaggregates comprising PEO-b-PVBTMA and PEO-b-PSS. The materials characteristics of these charged assemblies were investigated with dynamic light scattering, small-angle X-ray scattering, and cryogenic-transmission electron microscopy imaging. This model synthetic platform offers a straightforward path to expand the design space of conventional polyelectrolytes into gram-scale block polymer structures, which can ultimately enable the development of more sophisticated ionic materials into technology.
Collapse
Affiliation(s)
- Jeffrey M. Ting
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hao Wu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Samanvaya Srivastava
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Matthew V. Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
19
|
Liu Z, Lv Y, Zhu A, An Z. One-Enzyme Triple Catalysis: Employing the Promiscuity of Horseradish Peroxidase for Synthesis and Functionalization of Well-Defined Polymers. ACS Macro Lett 2018; 7:1-6. [PMID: 35610931 DOI: 10.1021/acsmacrolett.7b00950] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We demonstrate a new concept in polymer chemistry that the promiscuity of enzymes, as represented by horseradish peroxidase, can be employed for RAFT polymerization and thiol-ene and Diels-Alder reactions to synthesize well-defined functional polymers, via three different catalytic reactions mediated by one single enzyme.
Collapse
Affiliation(s)
- Zhifen Liu
- Institute of Nanochemistry
and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yue Lv
- Institute of Nanochemistry
and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Anqi Zhu
- Institute of Nanochemistry
and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry
and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
20
|
De Alwis Watuthanthrige N, Kurek PN, Konkolewicz D. Photolabile protecting groups: a strategy for making primary amine polymers by RAFT. Polym Chem 2018. [DOI: 10.1039/c7py01398a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photolabile amine protecting groups are combined with RAFT polymerization to create well-defined amine containing polymers, which is typically a challenge for RAFT polymerization.
Collapse
Affiliation(s)
| | - Pierce N. Kurek
- Department of Chemistry and Biochemistry
- Miami University
- Oxford
- USA
| | | |
Collapse
|
21
|
Gunay US, Cetin M, Daglar O, Hizal G, Tunca U, Durmaz H. Ultrafast and efficient aza- and thiol-Michael reactions on a polyester scaffold with internal electron deficient triple bonds. Polym Chem 2018. [DOI: 10.1039/c8py00485d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyester scaffold possessing electron deficient triple bonds in the main chain was prepared and utilized as a precursor for aza- and thiol-Michael addition reactions.
Collapse
Affiliation(s)
- Ufuk Saim Gunay
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Muge Cetin
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Ozgun Daglar
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Gurkan Hizal
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Umit Tunca
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Hakan Durmaz
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| |
Collapse
|
22
|
Kumar S, Deike S, Binder WH. One-Pot Synthesis of Thermoresponsive Amyloidogenic Peptide-Polymer Conjugates via Thio-Bromo "Click" Reaction of RAFT Polymers. Macromol Rapid Commun 2017; 39. [PMID: 29076195 DOI: 10.1002/marc.201700507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Indexed: 11/09/2022]
Abstract
A synthetic strategy to efficiently prepare main-chain peptide-polymer conjugates probing their aggregation in solution is described. An in situ tandem reaction based on aminolysis/thio-bromo "click" reaction is performed to tether an amyloidogenic peptide fragment amyloid-β17-20 (Leu-Val-Phe-Phe (LVFF)) to the ω-chain end of poly(diethylene glycol methyl ether acrylate) (PDEGA), prepared via reversible addition fragmentation chain transfer polymerization. Structural confirmation of the constructed conjugates PDEGA-LVFF (Mn,SEC = 5600, Ð = 1.21), (Mn,SEC = 7600, Ð = 1.16), and (Mn,SEC = 8900, Ð = 1.15) is successfully made by combined studies of 1 H NMR, size-exclusion chromatography, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and electrospray ionization time-of-flight (ESI-TOF) mass spectrometry. The effect of the peptidic constituent on the thermoresponsive behavior of the polymer is examined by UV-vis spectroscopy, and the self-assembly behavior of the amphiphilic conjugate is further exploited, exhibiting micellar morphology in aqueous solution.
Collapse
Affiliation(s)
- Sonu Kumar
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Stefanie Deike
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry Physics and Mathematics), Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| |
Collapse
|
23
|
Hill MR, Guégain E, Tran J, Figg CA, Turner AC, Nicolas J, Sumerlin BS. Radical Ring-Opening Copolymerization of Cyclic Ketene Acetals and Maleimides Affords Homogeneous Incorporation of Degradable Units. ACS Macro Lett 2017; 6:1071-1077. [PMID: 35650945 DOI: 10.1021/acsmacrolett.7b00572] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Radical copolymerization of donor-acceptor (D-A) monomer pairs has served as a versatile platform for the development of alternating copolymers. However, due to the use of conventional radical polymerization, the resulting copolymers have generally been limited to nondegradable vinyl polymers. By combining radical D-A copolymerization with radical ring-opening polymerization (rROP), we have synthesized an alternating copolymer with a high incorporation of degradable backbone units. Copolymerization of N-ethyl maleimide (NEtMI) with the cyclic ketene acetal (CKA) 2-methylene-4-phenyl-1,3-dioxolane (MPDL) was demonstrated to proceed in an alternating fashion, and controlled polymerization was achieved using reversible addition-fragmentation chain transfer (RAFT) polymerization. Spontaneous copolymerization, in the absence of an exogenous initiating source, occurred when the mixture of monomers was heated, presumably due to the large electron disparity between the comonomers. Chain-extension with styrene afforded well-defined P(MPDL-alt-NEtMI)-b-polystyrene copolymers, and degradation of the homopolymers and block copolymers showed complete breakdown of the alternating copolymer.
Collapse
Affiliation(s)
- Megan R. Hill
- George
and Josephine Butler Polymer Research Laboratory, Department of Chemistry,
Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
- Institut
Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Elise Guégain
- Institut
Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Johanna Tran
- Institut
Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - C. Adrian Figg
- George
and Josephine Butler Polymer Research Laboratory, Department of Chemistry,
Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Andrew C. Turner
- George
and Josephine Butler Polymer Research Laboratory, Department of Chemistry,
Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Julien Nicolas
- Institut
Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Brent S. Sumerlin
- George
and Josephine Butler Polymer Research Laboratory, Department of Chemistry,
Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Smith AAA, Autzen HE, Laursen T, Wu V, Yen M, Hall A, Hansen SD, Cheng Y, Xu T. Controlling Styrene Maleic Acid Lipid Particles through RAFT. Biomacromolecules 2017; 18:3706-3713. [DOI: 10.1021/acs.biomac.7b01136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anton A. A. Smith
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
- Science
and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Henriette E. Autzen
- Science
and Technology, Aarhus University, 8000 Aarhus, Denmark
- Biochemistry
and Biophysics, UCSF, San Francisco, California 94143, United States
| | - Tomas Laursen
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Vincent Wu
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
| | - Max Yen
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
| | - Aaron Hall
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
| | - Scott D. Hansen
- California
Institute for Quantitative Biosciences (QB3), UC Berkeley, Berkeley, California 94720, United States
| | - Yifan Cheng
- Biochemistry
and Biophysics, UCSF, San Francisco, California 94143, United States
| | - Ting Xu
- Chemistry,
Materials Science and Engineering UC Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Frayne SH, Murthy RR, Northrop BH. Investigation and Demonstration of Catalyst/Initiator-Driven Selectivity in Thiol-Michael Reactions. J Org Chem 2017; 82:7946-7956. [PMID: 28695735 DOI: 10.1021/acs.joc.7b01200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thiol-Michael "click" reactions are essential synthetic tools in the preparation of various materials including polymers, dendrimers, and other macromolecules. Despite increasing efforts to apply thiol-Michael chemistry in a controlled fashion, the selectivity of base- or nucleophile-promoted thiol-Michael reactions in complex mixtures of multiple thiols and/or acceptors remains largely unknown. Herein, we report a thorough fundamental study of the selectivity of thiol-Michael reactions through a series of 270 ternary reactions using 1H NMR spectroscopy to quantify product selectivity. The varying influences of different catalysts/initiators are explored using ternary reactions between two Michael acceptors and a single thiol or between a single Michael acceptor and two thiols using three different catalysts/initiators (triethylamine, DBU, and dimethylphenylphosphine) in chloroform. The results from the ternary reactions provide a platform from which sequential quaternary, one-pot quaternary, and sequential senary thiol-Michael reactions were designed and their selectivities quantified. These results provide insights into the design of selective thiol-Michael reactions that can be used for the synthesis and functionalization of multicomponent polymers and further informs how catalyst/initiator choice influences the reactivity between a given thiol and Michael acceptor.
Collapse
Affiliation(s)
- Stephen H Frayne
- Department of Chemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Raghavendra R Murthy
- Department of Chemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University , Middletown, Connecticut 06459, United States
| |
Collapse
|
26
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
27
|
Desmet GB, Sabbe MK, D'hooge DR, Espeel P, Celasun S, Marin GB, Du Prez FE, Reyniers MF. Thiol-Michael addition in polar aprotic solvents: nucleophilic initiation or base catalysis? Polym Chem 2017. [DOI: 10.1039/c7py00005g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The thiol-Michael addition of ethanethiol to ethyl acrylate, methyl vinylsulfone and maleimide initiated by ethyl-, diethyl-, triethylamine and triethylphosphine in tetrahydrofuran (THF) is investigated at room temperature.
Collapse
Affiliation(s)
| | | | - Dagmar. R. D'hooge
- Laboratory for Chemical Technology
- Ghent University
- Gent
- Belgium
- Department of Textiles
| | - Pieter Espeel
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Gent
- Belgium
| | - Sensu Celasun
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Gent
- Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology
- Ghent University
- Gent
- Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Gent
- Belgium
| | | |
Collapse
|