1
|
Tokita Y, Uchida T, Kamigawara T, Hoka K, Nitto R, Ohta Y, Yokozawa T. Tandem Kumada-Tamao catalyst-transfer condensation polymerization and Suzuki-Miyaura coupling for the synthesis of end-functionalized poly(3-hexylthiophene). Chem Commun (Camb) 2023; 59:13139-13142. [PMID: 37811687 DOI: 10.1039/d3cc04100j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Successive Kumada-Tamao catalyst-transfer condensation polymerization of 2-bromo-5-chloromagnesio-3-hexylthiophene and Suzuki-Miyaura end-functionalization with pinacol arylboronate in one pot afforded poly(3-hexylthiophene) (P3HT) with a base-sensitive functional group at both ends. The use of poly(methyl methacrylate) (PMMA) bearing a boronic acid ester moiety at one end enabled one-pot synthesis of PMMA-b-P3HT-b-PMMA triblock copolymer.
Collapse
Affiliation(s)
- Yu Tokita
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Tatsuya Uchida
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Takeru Kamigawara
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Kenta Hoka
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Reo Nitto
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Yoshihiro Ohta
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
2
|
Synergistic catalysis for the synthesis of semiconducting polymers. Polym J 2022. [DOI: 10.1038/s41428-022-00719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractOrganic semiconductors have received much interest over the past few decades. As the field has progressed, so has the complexity of the molecular structures of organic semiconductors. Often, the highest-performing organic semiconductors (i.e., those with the highest charge mobility or those that provide the highest power conversion efficiencies in organic photovoltaics) involve complex syntheses, making them very challenging to synthesize, even by experienced synthetic chemists. In this focused review, we report on recent efforts in developing more efficient synthetic pathways. Specifically, the concept of synergistic catalysis, which involves the use of two or more catalysts with orthogonal reactivity to enable reactions that are not possible with the use of a single catalyst, is introduced. Synergistic catalysis allows for controlled polymerizations, room-temperature reactions, and/or polymerizations with greater regioselectivity, opening the door to more time-, labor-, cost-, and energy-saving methods for synthesizing semiconducting polymers.
Collapse
|
3
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Tokita Y, Katoh M, Kosaka K, Ohta Y, Yokozawa T. Precision synthesis of a fluorene-thiophene alternating copolymer by means of the Suzuki–Miyaura catalyst-transfer condensation polymerization: the importance of the position of an alkyl substituent on thiophene of the biaryl monomer to suppress disproportionation. Polym Chem 2021. [DOI: 10.1039/d1py01184g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Suzuki–Miyaura coupling polymerization of PinB-F8T(3)-Br was accompanied by disproportionation, whereas that of PinB-F8T(4)-Br proceeded in a chain-growth polymerization manner to afford a well-defined fluorene-thiophene alternating copolymer.
Collapse
Affiliation(s)
- Yu Tokita
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Masaru Katoh
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kentaro Kosaka
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshihiro Ohta
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Tsutomu Yokozawa
- Department of Materials and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
5
|
Borysenko IO, Sviatenko LK, Okovytyy SI, Leszczynski J. Efficient approach for exploring the multiple-channel bimolecular interactions of conformationally flexible reagents. Epoxide ring opening reaction. Struct Chem 2020. [DOI: 10.1007/s11224-020-01663-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Curtis ER, Hannigan MD, Vitek AK, Zimmerman PM. Quantum Chemical Investigation of Dimerization in the Schlenk Equilibrium of Thiophene Grignard Reagents. J Phys Chem A 2020; 124:1480-1488. [DOI: 10.1021/acs.jpca.9b09985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ethan R. Curtis
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, United States
| | - Matthew D. Hannigan
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, United States
| | - Andrew K. Vitek
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Guo K, Jiang Y, Sui Y, Deng YF, Geng YH. Dimethylacetamide-promoted Direct Arylation Polycondensation of 6,6′-Dibromo-7,7′-diazaisoindigo and (E)-1,2-bis(3,4-difluorothien-2-yl)ethene toward High Molecular Weight n-Type Conjugated Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2277-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Huang Y, Luscombe CK. Towards Green Synthesis and Processing of Organic Solar Cells. CHEM REC 2019; 19:1039-1049. [DOI: 10.1002/tcr.201800145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/10/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Yunping Huang
- Department of Material Science & Engineering University of Washington Seattle WA 98195
| | - Christine K. Luscombe
- Department of Material Science & Engineering University of Washington Seattle WA 98195
- Department of Chemistry University of Washington Seattle WA 98195
| |
Collapse
|
9
|
Simm GN, Vaucher AC, Reiher M. Exploration of Reaction Pathways and Chemical Transformation Networks. J Phys Chem A 2018; 123:385-399. [DOI: 10.1021/acs.jpca.8b10007] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gregor N. Simm
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Alain C. Vaucher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Lee JA, Luscombe CK. Dual-Catalytic Ag-Pd System for Direct Arylation Polymerization to Synthesize Poly(3-hexylthiophene). ACS Macro Lett 2018; 7:767-771. [PMID: 35650765 DOI: 10.1021/acsmacrolett.8b00429] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Direct arylation polymerization (DArP) has gained interest in materials chemistry as a method to synthesize conjugated polymers with minimal use of harsh reagents and additional steps. Traditional DArP conditions do not readily yield ideal polymerization characteristics, including chain-growth and low dispersities. It would be of great utility to advance DArP methodology to become competitive with traditional conjugated polymerization techniques. We have developed conditions for a dual-catalytic Ag-Pd system for the synthesis of poly(3-hexylthiophene) (P3HT) that exhibits chain-growth kinetics, low dispersities, and catalyst chain association by Pd. Specifically, the presence of Ag-carboxylate additives plays a beneficial role in the polymerization as a C-H activating agent, while PEPPSI-iPr is used as the Pd source for C-C coupling. The addition of pyridine is necessary to inhibit Pd-mediated C-H activation in the interest of catalyst orthogonality, which can lower dispersities.
Collapse
Affiliation(s)
- Jason Albert Lee
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Christine K. Luscombe
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, United States
| |
Collapse
|
11
|
Baker MA, Tsai C, Noonan KJT. Diversifying Cross‐Coupling Strategies, Catalysts and Monomers for the Controlled Synthesis of Conjugated Polymers. Chemistry 2018; 24:13078-13088. [DOI: 10.1002/chem.201706102] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Matthew A. Baker
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| | - Chia‐Hua Tsai
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| | - Kevin J. T. Noonan
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| |
Collapse
|
12
|
Vitek AK, Leone AK, McNeil AJ, Zimmerman PM. Spin-Switching Transmetalation at Ni Diimine Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andrew K. Vitek
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Amanda K. Leone
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Anne J. McNeil
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Li Y, Meng H, Li Y, Pang B, Luo G, Huang J. Adjusting the energy levels and bandgaps of conjugated polymers via Lewis acid–base reactions. NEW J CHEM 2018. [DOI: 10.1039/c8nj04453h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stoichiometry of the Lewis acid–base coordination between polymers and BCF and the effects on the optoelectronic properties.
Collapse
Affiliation(s)
- Yongchun Li
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Huifeng Meng
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Yuqing Li
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Bo Pang
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Genggeng Luo
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| | - Jianhua Huang
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen
- P. R. China
| |
Collapse
|
14
|
Hameury S, Gourlaouen C, Sommer M. Balancing steric and electronic effects of bidentate, mixed P,N ligands to control Kumada catalyst transfer polycondensation of a sterically hindered thiophene. Polym Chem 2018. [DOI: 10.1039/c8py00452h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Screening various P,N ligands to control KCTP of a sterically hindered thiophene reveals an oxazoline-based ligand most effective.
Collapse
Affiliation(s)
- S. Hameury
- Universität Freiburg
- Makromolekulare Chemie
- 79104 Freiburg
- Germany
- Freiburger Materialforschungszentrum
| | - C. Gourlaouen
- Laboratoire de Chimie Quantique
- Institut de Chimie
- UMR 7177 CNRS-Université de Strasbourg
- 67008 Strasbourg
- France
| | - M. Sommer
- Universität Freiburg
- Makromolekulare Chemie
- 79104 Freiburg
- Germany
- Freiburger Materialforschungszentrum
| |
Collapse
|
15
|
Dewyer AL, Argüelles AJ, Zimmerman PM. Methods for exploring reaction space in molecular systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1354] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amanda L. Dewyer
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
| | | | | |
Collapse
|
16
|
Kunnikuruvan S, Parandekar PV, Prakash O, Tsotsis TK, Nair NN. Polymerization Mechanism and Cross-Link Structure of Nadic End-Capped Polymers: A Quantum Mechanical and Microkinetic Investigation. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sooraj Kunnikuruvan
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | | - Om Prakash
- Boeing Research & Technology, India-centre, Bangalore 560016, India
| | - Thomas K. Tsotsis
- Boeing Research & Technology, Huntington Beach, California 92647, United States
| | - Nisanth N. Nair
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
17
|
Dewyer AL, Zimmerman PM. Simulated Mechanism for Palladium-Catalyzed, Directed γ-Arylation of Piperidine. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01390] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amanda L. Dewyer
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Mikami K, Nojima M, Masumoto Y, Mizukoshi Y, Takita R, Yokozawa T, Uchiyama M. Catalyst-dependent intrinsic ring-walking behavior on π-face of conjugated polymers. Polym Chem 2017. [DOI: 10.1039/c6py01934j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The balance between the ring-walking process and the oxidative-addition state are key determinants of catalyst mobility in catalyst-transfer condensation polymerization.
Collapse
Affiliation(s)
| | - Masataka Nojima
- Department of Material and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Yui Masumoto
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Yoshihide Mizukoshi
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Ryo Takita
- Advanced Elements Chemistry Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Tsutomu Yokozawa
- Department of Material and Life Chemistry
- Kanagawa University
- Yokohama 221-8686
- Japan
| | - Masanobu Uchiyama
- Elements Chemistry Laboratory
- RIKEN
- Wako-shi
- Japan
- Graduate School of Pharmaceutical Sciences
| |
Collapse
|