1
|
Xu X, Guo S, Vancso GJ. Perceiving and Countering Marine Biofouling: Structure, Forces, and Processes at Surfaces in Sea Water Across the Length Scales. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7996-8018. [PMID: 40113572 PMCID: PMC11966768 DOI: 10.1021/acs.langmuir.5c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
In marine industries, severe economic losses are caused by accumulating organisms on surfaces in biofouling processes. Establishing a universal and nontoxic protocol to eliminate biofouling has been a notoriously difficult task due to the complexity of the marine organisms' interactions with surfaces and the chemical, mechanical, and morphological diversity of the surfaces involved. The tremendous variety of environmental parameters in marine environments further complicates this field. For efficient surface engineering to combat fouling, secretion, chemical structure, and properties of biobased adhesives and adhesion mechanisms must be understood. Advanced characterization techniques, like Atomic Force Microscopy (AFM), now allow one to study the three parameters determining surface adhesion and, eventually, fouling, i.e., morphology, chemistry, and surface mechanical modulus. By AFM, characterization can now be performed across length scales from nanometers to hundreds of micrometers. This review provides an up-to-date account of the most promising AFM-based approaches for imaging and characterizing natural adhesives provided by marine organisms. We summarize the current understanding of the molecular basis and the related relevant processes of marine fouling. We focus on applications of AFM "beyond imaging", i.e., to study interactions between adhesives and the surfaces involved. Additionally, we discuss the performance enhancement of polymer antifouling coatings using information derived from AFM. Knowledge and control of marine adhesion can be applied to prevent marine fouling, as well as to design bioadhesives to enhance potential medical applications. We present some milestone results and conclude with an outlook discussing novel possibilities for designing antifouling coatings and medical bioadhesives.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Shenzhen
Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Shifeng Guo
- Shenzhen
Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong
Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute
of Advanced Technology, Chinese Academy
of Sciences, Shenzhen 518055, P.R. China
- The
Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Gyula Julius Vancso
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Sustainable
Polymer Chemistry & Materials Science and Technology of Polymers,
MESA+, Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Wu J, Cao F, Yeung PWF, Li M, Ohno K, Ngai T. A Total Internal Reflection Microscopy (TIRM)-Based Approach for Direct Characterization of Polymer Brush Conformational Change in Aqueous Solution. ACS Macro Lett 2024; 13:1376-1382. [PMID: 39364913 PMCID: PMC11483946 DOI: 10.1021/acsmacrolett.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
This study presents a novel approach utilizing total internal reflection microscopy (TIRM) to effectively characterize the swelling and collapse of polymer brushes in aqueous solutions. Zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and nonionic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) brushes are chosen as model systems. By investigation of an intriguing theory-experiment discrepancy observed during the measurement of near-wall hindered diffusion, valuable insights into the compressibility of polymer brushes are obtained, revealing their conformational information in aqueous solution. The results demonstrate that zwitterionic PCBMA brushes exhibit minimal antipolyelectrolyte effects in 0.1-10 mM NaCl solution but undergo significant swelling with increasing pH. On the other hand, nonionic POEGMA brushes exhibit similar responses to ionic strength as weak polyelectrolyte brushes. These unexpected findings enhance our understanding of polymer brushes beyond classical theories. The TIRM-based approach proves to be effective for characterizing polymer brushes and other soft nanomaterials.
Collapse
Affiliation(s)
- Jiahao Wu
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Feng Cao
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Pui Wo Felix Yeung
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Manjia Li
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Kohji Ohno
- Department
of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - To Ngai
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong 999077, China
| |
Collapse
|
3
|
Shipley W, Wang Y, Chien J, Wang B, Tao AR. Characterization of Surface Patterning on Polymer-Grafted Nanocubes Using Atomic Force Microscopy and Force Volume Mapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20464-20473. [PMID: 39298634 DOI: 10.1021/acs.langmuir.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Atomic force microscopy (AFM), in particular force spectroscopy, is a powerful tool for understanding the supramolecular structures associated with polymers grafted to surfaces, especially in regimes of low polymer density where different morphological structures are expected. In this study, we utilize force volume mapping to characterize the nanoscale surfaces of Ag nanocubes (AgNCs) grafted with a monolayer of polyethylene glycol (PEG) chains. Spatially resolved force-distance curves taken for a single AgNC were used to map surface properties, such as adhesion energy and deformation. We confirm the presence of surface octopus micelles that are localized on the corners of the AgNC, using force curves to resolve structural differences between the micelle "bodies" and "legs". Furthermore, we observe unique features of this system including a polymer corona stemming from AgNC-substrate interactions and polymer bridging stemming from particle-particle interactions.
Collapse
Affiliation(s)
- Wade Shipley
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| | - Yufei Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| | - Joelle Chien
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
| | - Bin Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
| | - Andrea R Tao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| |
Collapse
|
4
|
Leontev A, Rozental L, Freger V. Dynamics of underwater microparticle adhesion to soft hydrated surfaces: Modeling and analysis by time-dependent AFM force spectroscopy. J Colloid Interface Sci 2023; 651:464-476. [PMID: 37556904 DOI: 10.1016/j.jcis.2023.07.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
HYPOTHESIS Understanding the attachment and detachment of microparticles and living cells to surfaces is crucial for developing antifouling strategies. Hydrogel coatings have shown promise in reducing fouling and particle adhesion due to their softness and high water content, yet the mechanisms involved are dynamic and complex, and relevant parameters are not easily accessible. AFM-based force spectroscopy (FS) experiments with colloidal probe particles is a direct way of evaluating adhesive and mechanical relaxational dynamics, yet their interpretation and modeling has been challenging. The present study proposes and examines several dynamic models, suitable for quantitative analysis of FS results with model probe particle on hydrogels surfaces. EXPERIMENTS FS were performed using polyethylene glycol (PEG) hydrogels and polystyrene microspheres including particle attachement to the hydrogel surface (loading), holding the particle on the surface with a constant force for variable times (dwell) and pulling the particle away from the surface (unloading) FINDINGS: It was found that a viscoelastic extension of the classical JKR model with energy of adhesion unevenly distributed over the contact area and vanishing at its circumferences accurately described all FS experiments and yielded physically consistent viscoelastic and adhesive dynamic parameters, steadily changing with dwell time and applied force. The observed time evolution and force dependence were rationalized as combination of osmotic and osmo-mechnical relaxation in the contact region.
Collapse
Affiliation(s)
- Aleksandr Leontev
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Lina Rozental
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel
| | - Viatcheslav Freger
- Wolfson Department of Chemical Engineering, Technion - IIT, Haifa, Israel; Grand Technion Energy Program, Technion - IIT, Haifa, Israel; Russel Berrie Nanotechnology Institute, Technion - IIT, Haifa, Israel.
| |
Collapse
|
5
|
Hofmaier M, Flemming P, Guskova O, Münch AS, Uhlmann P, Müller M. Swelling and Orientation Behavior of End-Grafted Polymer Chains by In Situ Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Complementing In Situ Ellipsometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16219-16230. [PMID: 37941338 DOI: 10.1021/acs.langmuir.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The literature lacks established concrete parameters for assigning grafted chain regimes. In this context, dichroic in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and in situ ellipsometry were used complementarily, offering new opportunities for conformational analysis of end-grafted polymer chains. Especially polymer chain orientation was studied as a new parameter, among others, for proper chain regime assignment in this report. Alkyne-functionalized poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) with a molecular weight of 49.8 kg/mol and a contour length of around 80 nm was grafted to self-assembled monolayers bearing triazole end groups as reported. Different chain regimes were generated by using three different grafting densities. ATR-FTIR spectroscopy based on the ν(C═O) stretching vibration at around 1728 cm-1 provided a new direct approach to determine the GD of polymer chains. Significant shifts in the position of the ν(C═O) band comparing dry and wet states were observed, caused by increased hydrogen bonding interactions between PDMAEMA and water. Finally, the averaged orientation of PDMAEMA chains along the z-axis was determined using dichroic ATR-FTIR spectroscopy based on the dichroic ratios of the ν(C═O) band and molecular order parameters SZ,MOL calculated thereof. High SZ,MOL values were found for the wet state compared to the dry state, confirming that all GD PDMAEMA samples are in the brush regime in the swollen state.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Zellescher Weg 19, D-01069 Dresden, Germany
| | - Patricia Flemming
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Zellescher Weg 19, D-01069 Dresden, Germany
| | - Olga Guskova
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Kaitzer Straße 4, D-01069 Dresden, Germany
| | - Alexander S Münch
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Petra Uhlmann
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Martin Müller
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062 Dresden, Germany
| |
Collapse
|
6
|
Dhingra S, Gaur V, Saini V, Rana K, Bhattacharya J, Loho T, Ray S, Bajaj A, Saha S. Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Biomater Sci 2022; 10:3856-3877. [PMID: 35678619 DOI: 10.1039/d2bm00245k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Biomedical device or implant-associated infections caused by pathogenic bacteria are a major clinical issue, and their prevention and/or treatment remains a challenging task. Infection-resistant antimicrobial coatings with impressive cytocompatibility offer a step towards addressing this problem. Herein, we report a new strategy for constructing highly antibacterial as well as cytocompatible mixed polymer brushes onto the surface of 3D printed scaffold made of biodegradable tartaric acid-based aliphatic polyester blends. The mixed brushes were nothing but a combination of poly(3-dimethyl-(methacryloyloxyethyl) ammonium propane sulfonate) (polyDMAPS) and poly((oligo ethylene glycol) methyl ether methacrylate) (polyPEGMA) with varying chain length (n) of the ethylene glycol unit (n = 1, 6, 11, and 21). Both homo and copolymeric brushes of polyDMAPS with polyPEGMA exhibited antibacterial efficacy against both Gram positive and Gram negative pathogens such as E. coli (Escherichia coli) and S. aureus (Staphylococcus aureus) because of the combined action of bacteriostatic effects originating from strongly hydrated layers present in zwitterionic (polyDMAPS) and hydrophilic (polyPEGMA) copolymer brushes. Interestingly, a mixed polymer brush comprising polyDMAPS and polyPEGMA (ethylene glycol chain unit of 21) at 50/50 ratio provided zero bacterial growth and almost 100% cytocompatibility (tested using L929 mouse fibroblast cells), making the brush-modified biodegradable substrate an excellent choice for an infection-resistant and cytocompatible surface. An attempt was made to understand their extraordinary performance with the help of contact angle, surface charge analysis and nanoindentation study, which revealed the formation of a hydrophilic, almost neutral, very soft surface (99.99% reduction in hardness and modulus) after modification with the mixed brushes. This may completely suppress bacterial adhesion. Animal studies demonstrated that these brush-modified scaffolds are biocompatible and can mitigate wound infections. Overall, this study shows that the fascinating combination of an infection-resistant and cytocompatible surface can be generated on biodegradable polymeric surfaces by modulating the surface hardness, flexibility and hydrophilicity by selecting appropriate functionality of the copolymeric brushes grafted onto them, making them ideal non-leaching, anti-infective, hemocompatible and cytocompatible coatings for biodegradable implants.
Collapse
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | | | - Thomas Loho
- Department of Chemical and Materials Engineering, The University of Auckland, New Zealand Institute for Minerals to Materials Research, India
| | - Sudip Ray
- Department of Chemical and Materials Engineering, The University of Auckland, New Zealand Institute for Minerals to Materials Research, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
7
|
Makarova N, Sokolov I. Cell mechanics can be robustly derived from AFM indentation data using the brush model: error analysis. NANOSCALE 2022; 14:4334-4347. [PMID: 35253828 DOI: 10.1039/d2nr00041e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The brush model was introduced to interpret AFM indentation data collected on biological cells in a more consistent way compared just to the traditional Hertz model. It takes into account the presence of non-Hertzian deformation of the pericellular brush-like layer surrounding cells (a mix of glycocalyx molecules and microvilli/microridges). The model allows finding the effective Young's modulus of the cell body in a less depth-dependent manner. In addition, it allows finding the force due to the pericellular brush layer. Compared to simple mechanical models used to interpret the indentation experiments, the brush model has additional complexity. It raises the concern about the possible unambiguity of separation of mechanical properties of the cell body and pericellular layer. Here we present the analysis of the robustness of the brush model and demonstrate a weak dependence of the obtained results on the uncertainties within the model and experimental data. We critically analyzed the use of the brush model on a variety of AFM force curves collected on rather distinct cell types: human cervical epithelial cells, rat neurons, and zebrafish melanocytes. We conclude that the brush model is robust; the errors in the definition of the effective Young's modulus due to possible uncertainties of the model and experimental data are within 4%, which is less than the error, for example, due to a typical uncertainty in the spring constant of the AFM cantilever. We also discuss the errors of parameterization of the force due to the pericellular brush layer.
Collapse
Affiliation(s)
- N Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - I Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Department of Physics, Tufts University, Medford, MA, USA.
| |
Collapse
|
8
|
Holuigue H, Lorenc E, Chighizola M, Schulte C, Varinelli L, Deraco M, Guaglio M, Gariboldi M, Podestà A. Force Sensing on Cells and Tissues by Atomic Force Microscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:2197. [PMID: 35336366 PMCID: PMC8955449 DOI: 10.3390/s22062197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young's Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.
Collapse
Affiliation(s)
- Hatice Holuigue
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Ewelina Lorenc
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Matteo Chighizola
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Carsten Schulte
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| | - Luca Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (L.V.); (M.G.)
| | - Marcello Deraco
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (M.D.); (M.G.)
| | - Marcello Guaglio
- Peritoneal Surface Malignancies Unit, Colorectal Surgery, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (M.D.); (M.G.)
| | - Manuela Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy; (L.V.); (M.G.)
| | - Alessandro Podestà
- CIMAINA and Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (H.H.); (E.L.); (M.C.); (C.S.)
| |
Collapse
|
9
|
Li TT, Cheng SB, Feng LF, Gu XP, Zhang CL, Hu GH. Measuring the Interfacial Thickness of Immiscible Polymer Blends by Nano-probing of Atomic Force Microscopy. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Anthi J, Kolivoška V, Holubová B, Vaisocherová-Lísalová H. Probing polymer brushes with electrochemical impedance spectroscopy: a mini review. Biomater Sci 2021; 9:7379-7391. [PMID: 34693954 DOI: 10.1039/d1bm01330k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymer brushes are frequently used as surface-tethered antifouling layers in biosensors to improve sensor surface-analyte recognition in the presence of abundant non-target molecules in complex biological samples by suppressing nonspecific interactions. However, because brushes are complex systems highly responsive to changes in their surrounding environment, studying their properties remains a challenge. Electrochemical impedance spectroscopy (EIS) is an emerging method in this context. In this mini review, we aim to elucidate the potential of EIS for investigating the physicochemical properties and structural aspects of polymer brushes. The application of EIS in brush-based biosensors is also discussed. Most common principles employed in these biosensors are presented, as well as interpretation of EIS data obtained in such setups. Overall, we demonstrate that the EIS-polymer brush pairing has a considerable potential for providing new insights into brush functionalities and designing highly sensitive and specific biosensors.
Collapse
Affiliation(s)
- Judita Anthi
- Institute of Physics of the CAS, Na Slovance 2, 182 21 Prague, Czech Republic. .,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | | |
Collapse
|
11
|
Ghermezcheshme H, Makki H, Mohseni M, Ebrahimi M. Hydrophilic dangling chain interfacial segregation in polyurethane networks at aqueous interfaces and its underlying mechanisms: molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:26351-26363. [PMID: 33179637 DOI: 10.1039/d0cp04244g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymer networks with hydrophilic dangling chains are ideal candidates for many submerged applications, e.g., protein non-adhesive coatings with non-fouling behavior. The dangling chains segregate from the polymer network towards the water and form a brush-like structure at the interface. Several factors such as the polymer network structure, dangling chain length, and water/dangling chain interaction may all affect the interfacial performance of the polymer. Therefore, we employed a Martini based coarse-grained (CG) molecular dynamics (MD) simulation to elucidate the influences of the abovementioned parameters on dangling chain interfacial segregation. We built up several polyurethane (PU) networks based on poly(tetra methylene glycol) (PTMG), as a macrodiol, and methoxy poly(ethylene glycol) (mPEG), as a dangling chain, with varying molecular weights. We found out that the macrodiol/dangling chain length ratio considerably smaller than one impedes the migration of dangling chains towards the water interface, while the dangling chain hydrophilicity and length determine the polymer interfacial layer density/thickness. Then, we artificially changed the dangling chain affinity to water from an intermediate to a very attractive water/dangling chain interaction. We justified that a brush-like structure forms in two consecutive steps: first, a longitudinal, and then a lateral migration of dangling chains in water. The latter step results in a uniform interfacial layer over the polymer interface that mainly occurs in the case of the attractive water/dangling chain interaction.
Collapse
Affiliation(s)
- Hassan Ghermezcheshme
- Department of Polymer and Color Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran, Iran.
| | | | | | | |
Collapse
|
12
|
Leermakers FAM, Léonforte F, Luengo GS. Structure and Colloidal Stability of Adsorption Layers of Macrocycle, Linear, Comb, Star, and Dendritic Macromolecules. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frans A. M. Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | | |
Collapse
|
13
|
Liu Y, Sokolov I, Dokukin ME, Xiong Y, Peng P. Can AFM be used to measure absolute values of Young's modulus of nanocomposite materials down to the nanoscale? NANOSCALE 2020; 12:12432-12443. [PMID: 32495797 DOI: 10.1039/d0nr02314k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
At present, a technique potentially capable of measuring values of Young's modulus at the nanoscale is atomic force microscopy (AFM) working in the indentation mode. However, the question if AFM indentation data can be translated into absolute values of the modulus is not well-studied as yet, in particular, for the most interesting case of stiff nanocomposite materials. Here we investigate this question. A special sample of nanocomposite material, shale rock, was used, which is relatively homogeneous at the multi-micron scale. Two AFM modes, force-volume and PeakForce QNM were used in this study. The nanoindentation technique was used as a control benchmark for the measurement of effective Young's modulus of the shale sample. The indentation rate was carefully controlled. To ensure the self-consistency of the mechanical model used to analyze AFM data, the model was modified to take into account the presence of the surface roughness. We found excellent agreement between the average values of effective Young's modulus calculated within AFM and the nanoindenter benchmark method. At the same time, the softest and hardest areas of the sample were seen only with AFM.
Collapse
Affiliation(s)
- Yuke Liu
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA.
| | | | | | | | | |
Collapse
|
14
|
Hernández-Fragoso JS, Alas SJ, Gama Goicochea A. Mechanical response of a surface of increasing hardness covered with a nonuniform polymer brush: a numerical simulation model. RSC Adv 2020; 10:13405-13409. [PMID: 35493002 PMCID: PMC9051531 DOI: 10.1039/d0ra01385d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/25/2020] [Indexed: 11/24/2022] Open
Abstract
The compression force with indentation on a polymer brush with chains of unequal lengths is predicted with numerical simulations, as a function of increasing hardness of the grafting surface, finding that properties of the brush are distinguished from those of the surface and that its hardness propagates through the brush. The contributions to the force on a deformable surface covered with polymer brushes can be accounted for separately.![]()
Collapse
Affiliation(s)
- J S Hernández-Fragoso
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa Ciudad de México 05300 Mexico .,Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa Ciudad de México 05300 Mexico
| | - S J Alas
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa Ciudad de México 05300 Mexico .,Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa Ciudad de México 05300 Mexico.,Departamento de Química, Universidad Autónoma Metropolitana Unidad Iztapalapa Av. San Rafael Atlixco 186 Ciudad de México 09340 Mexico
| | - A Gama Goicochea
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec Av. Tecnológico s/n Ecatepec Estado de México 55210 Mexico
| |
Collapse
|
15
|
Razuvaeva EV, Kulebyakina AI, Streltsov DR, Bakirov AV, Kamyshinsky RA, Kuznetsov NM, Chvalun SN, Shtykova EV. Effect of Composition and Molecular Structure of Poly(l-lactic acid)/Poly(ethylene oxide) Block Copolymers on Micellar Morphology in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15470-15482. [PMID: 30441905 DOI: 10.1021/acs.langmuir.8b03379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of the hydrophobic block length in diblock (PLLA x- b-PEO113, x = 64, 166, 418) and triblock (PLLA y- b-PEO91- b-PLLA y, y = 30, 52, 120) copolymers of l-lactic acid and ethylene oxide on the structure of micelles prepared by dialysis was studied by wide- and small-angle X-ray scattering in dilute aqueous solution, dynamic light scattering, transmission electron microscopy, atomic force microscopy, and force spectroscopy. It was found that the size of the crystalline PLLA core is weakly dependent on the PLLA block length. In addition to individual micelles, a number of their micellar clusters were detected with characteristic distance between adjacent micelle cores decreasing with an increase in PLLA block length. This effect was explained by the change in the conformation of PEO chains forming the micellar corona because of their overcrowding. Force spectroscopy experiments also reveal a more stretched conformation of the PEO chains for the block copolymers with a shorter PLLA block. A model describing the structure of the individual micelles and their clusters was proposed.
Collapse
Affiliation(s)
- Ekaterina V Razuvaeva
- Enikolopov Institute of Synthetic Polymer Materials , Russian Academy of Sciences , Moscow 117393 , Russia
- National Research Centre "Kurchatov Institute" , Moscow 123182 , Russia
| | | | - Dmitry R Streltsov
- Enikolopov Institute of Synthetic Polymer Materials , Russian Academy of Sciences , Moscow 117393 , Russia
- National Research Centre "Kurchatov Institute" , Moscow 123182 , Russia
| | - Artem V Bakirov
- Enikolopov Institute of Synthetic Polymer Materials , Russian Academy of Sciences , Moscow 117393 , Russia
- National Research Centre "Kurchatov Institute" , Moscow 123182 , Russia
| | - Roman A Kamyshinsky
- National Research Centre "Kurchatov Institute" , Moscow 123182 , Russia
- Shubnikov Institute of Crystallography, FNRC "Crystallography and Photonics" , Russian Academy of Sciences , Moscow 119333 , Russia
| | | | - Sergei N Chvalun
- Enikolopov Institute of Synthetic Polymer Materials , Russian Academy of Sciences , Moscow 117393 , Russia
- National Research Centre "Kurchatov Institute" , Moscow 123182 , Russia
| | - Eleonora V Shtykova
- Semenov Institute of Chemical Physics , Russian Academy of Sciences , Moscow 119991 , Russia
- Shubnikov Institute of Crystallography, FNRC "Crystallography and Photonics" , Russian Academy of Sciences , Moscow 119333 , Russia
| |
Collapse
|
16
|
Hernando-Pérez M, Setayeshgar S, Hou Y, Temam R, Brun YV, Dragnea B, Berne C. Layered Structure and Complex Mechanochemistry Underlie Strength and Versatility in a Bacterial Adhesive. mBio 2018; 9:e02359-17. [PMID: 29437925 PMCID: PMC5801468 DOI: 10.1128/mbio.02359-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
While designing synthetic adhesives that perform in aqueous environments has proven challenging, microorganisms commonly produce bioadhesives that efficiently attach to a variety of substrates, including wet surfaces. The aquatic bacterium Caulobacter crescentus uses a discrete polysaccharide complex, the holdfast, to strongly attach to surfaces and resist flow. The holdfast is extremely versatile and has impressive adhesive strength. Here, we used atomic force microscopy in conjunction with superresolution microscopy and enzymatic assays to unravel the complex structure of the holdfast and to characterize its chemical constituents and their role in adhesion. Our data support a model whereby the holdfast is a heterogeneous material organized as two layers: a stiffer nanoscopic core layer wrapped into a sparse, far-reaching, flexible brush layer. Moreover, we found that the elastic response of the holdfast evolves after surface contact from initially heterogeneous to more homogeneous. From a composition point of view, besides N-acetyl-d-glucosamine (NAG), the only component that had been identified to date, our data show that the holdfast contains peptides and DNA. We hypothesize that, while polypeptides are the most important components for adhesive force, the presence of DNA mainly impacts the brush layer and the strength of initial adhesion, with NAG playing a primarily structural role within the core. The unanticipated complexity of both the structure and composition of the holdfast likely underlies its versatility as a wet adhesive and its distinctive strength. Continued improvements in understanding of the mechanochemistry of this bioadhesive could provide new insights into how bacteria attach to surfaces and could inform the development of new adhesives.IMPORTANCE There is an urgent need for strong, biocompatible bioadhesives that perform underwater. To strongly adhere to surfaces and resist flow underwater, the bacterium Caulobacter crescentus produces an adhesive called the holdfast, the mechanochemistry of which remains undefined. We show that the holdfast is a layered structure with a stiff core layer and a polymeric brush layer and consists of polysaccharides, polypeptides, and DNA. The DNA appears to play a role in the structure of the brush layer and initial adhesion, the peptides in adhesive strength, and the polysaccharides in the structure of the core. The complex, multilayer organization and diverse chemistry described here underlie the distinctive adhesive properties of the holdfast and will provide important insights into the mechanisms of bacterial adhesion and bioadhesive applications.
Collapse
Affiliation(s)
| | - Sima Setayeshgar
- Department of Physics, Indiana University, Bloomington, Indiana, USA
| | - Yifeng Hou
- Department of Mathematics, Indiana University, Bloomington, Indiana, USA
| | - Roger Temam
- Department of Mathematics, Indiana University, Bloomington, Indiana, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Cécile Berne
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
17
|
AFM-based detection of glycocalyx degradation and endothelial stiffening in the db/db mouse model of diabetes. Sci Rep 2017; 7:15951. [PMID: 29162916 PMCID: PMC5698475 DOI: 10.1038/s41598-017-16179-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/08/2017] [Indexed: 02/08/2023] Open
Abstract
Degradation of the glycocalyx and stiffening of endothelium are important pathophysiological components of endothelial dysfunction. However, to our knowledge, these events have not been investigated in tandem in experimental diabetes. Here, the mechanical properties of the glycocalyx and endothelium in ex vivo mouse aorta were determined simultaneously in indentation experiments with an atomic force microscope (AFM) for diabetic db/db and control db/+ mice at ages of 11–19 weeks. To analyze highly heterogeneous aorta samples, we developed a tailored classification procedure of indentation data based on a bi-layer brush model supplemented with Hertz model for quantification of nanomechanics of endothelial regions with and without the glycocalyx surface. In db/db mice, marked endothelial stiffening and reduced glycocalyx coverage were present already in 11-week-old mice and persisted in older animals. In contrast, reduction of the effective glycocalyx length was progressive and was most pronounced in 19-week-old db/db mice. The reduction of the glycocalyx length correlated with an increasing level of glycated haemoglobin and decreased endothelial NO production. In conclusion, AFM nanoindentation analysis revealed that stiffening of endothelial cells and diminished glycocalyx coverage occurred in early diabetes and were followed by the reduction of the glycocalyx length that correlated with diabetes progression.
Collapse
|
18
|
Wang D, Russell TP. Advances in Atomic Force Microscopy for Probing Polymer Structure and Properties. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01459] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Thomas P. Russell
- Polymer
Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Micklavzina BL, Longo ML. Characterization of Repulsive Forces and Surface Deformation in Thin Micellar Films via AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10483-10491. [PMID: 28903007 DOI: 10.1021/acs.langmuir.7b02508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here we examine how the force on an atomic force microscope (AFM) tip varies as it approaches micellar surfactant films, and use this information to discern the film's surface structure and Young's modulus. Rows of wormlike hemimicelles were created at a graphite interface using 10 mM sodium dodecyl sulfate (SDS). We found that the repulsive force on a silicon nitride tip as it approached the surface was exponential, with a decay length of 2.0 ± 0.1 nm. The addition of Na2SO4 was found to cause a change in this behavior, with a clear split into two exponential regions at concentrations above 1 mM. We also observed that the range of these forces increased with added salt from ∼15 nm in pure SDS to ∼20 nm at a Na2SO4 concentration of 1.34 mM. These forces were inconsistent with electrostatic repulsion, and were determined to be steric in nature. We show that the behavior at higher salt concentrations is consistent with the theory of polyelectrolyte brushes in the osmotic regime. From this, we hypothesize the presence of micellar brushes at the surface that behave similarly to adsorbed polymer chains. In addition, the Young's modulus of the film was taken from data near the interface using Sneddon's model, and found to be 80 ± 40 MPa. Similar experiments were performed with 10 mM dodecylamine hydrochloride (DAH) solutions in the presence of added magnesium chloride. The decay length for the pure DAH solution was found to be 2.6 ± 0.3 nm, and the addition of 1.34 mM of MgCl2 caused this to increase to 3.7 ± 0.3 nm. No decay length splitting was observed for DAH. We conclude that the behavior at the surface resembles that of an uncharged polymer brush, as the ionic and surface charge densities are much lower for DAH than for SDS.
Collapse
Affiliation(s)
- Benjamin L Micklavzina
- Department of Materials Science and Engineering, University of California Davis , Davis, California 95616, United States
| | - Marjorie L Longo
- Department of Chemical Engineering, University of California Davis , Davis, California 95616, United States
| |
Collapse
|